Inferring transcription factor regulatory networks from single-cell ATAC-seq data based on graph neural networks

被引:34
作者
Li, Hao [1 ,2 ]
Sun, Yu [1 ,2 ]
Hong, Hao [3 ,4 ]
Huang, Xin [2 ]
Tao, Huan [2 ]
Huang, Qiya [5 ,6 ]
Wang, Longteng [7 ]
Xu, Kang [1 ]
Gan, Jingbo [7 ]
Chen, Hebing [1 ,2 ]
Bo, Xiaochen [1 ,2 ]
机构
[1] Inst Hlth Serv & Transfus Med, Beijing, Peoples R China
[2] Beijing Inst Radiat Med, Beijing, Peoples R China
[3] Natl Ctr Biomed Anal, State Key Lab Prote, Beijing, Peoples R China
[4] Nanhu Lab, Jiaxing, Peoples R China
[5] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Natl Ctr Cardiovasc Dis, State Key Lab Cardiovasc Dis, Beijing, Peoples R China
[6] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Natl Ctr Cardiovasc Dis, Dept Cardiomyopathy Ctr, Beijing, Peoples R China
[7] Peking Univ, Ctr Stat Sci, Ctr Bioinformat, Sch Life Sci, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
LINK PREDICTION; INFERENCE; OMICS; DIFFERENTIATION; INTEGRATION; ACTIVATION; DYNAMICS; PROFILE; TIME;
D O I
10.1038/s42256-022-00469-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Transcription factor regulatory networks underlie major features of cellular identity and complex function such as pluripotency, development and differentiation. Li and colleagues develop a graph neural network to predict transcription factor regulatory networks based on single-cell ATAC-seq data. Sequence-specific transcription factors (TFs) are the key effectors of eukaryotic gene control and they regulate hundreds to thousands of downstream genes. Of particular interest are interactions in which a given TF regulates other TFs; these interactions define the TF regulatory networks (TRNs) that underlie cellular identity and major function. Chromatin accessibility depicts whether or not a DNA sequence is physically accessible and provides a direct measurement of transcriptional regulation. Benefiting from the accumulating chromatin accessibility data and deep learning advances, we developed a new computational method named DeepTFni to infer TRNs from the single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) data. By implementing a graph neural network, which is more suitable for network representation, DeepTFni shows outstanding performance in TRN inference, which it supports with limited numbers of cells. Furthermore, by applying DeepTFni we identified hub TFs in tissue development and tumorigenesis and revealed that many mixed-phenotype acute leukemia associated genes undergo a prominent alteration to the TRN while there is moderate difference in messenger RNA level. The DeepTFni webserver is easy to use and has provided the predicted TRNs for several popular cell lines.
引用
收藏
页码:389 / +
页数:18
相关论文
共 78 条
[1]   Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes [J].
Ackermann, Amanda M. ;
Wang, Zhiping ;
Schug, Jonathan ;
Naji, Ali ;
Kaestner, Klaus H. .
MOLECULAR METABOLISM, 2016, 5 (03) :233-244
[2]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[3]   Single-nucleus chromatin accessibility reveals intratumoral epigenetic heterogeneity in IDH1 mutant gliomas [J].
Al-Ali, Ruslan ;
Bauer, Katharina ;
Park, Jong-Whi ;
Al Abdulla, Ruba ;
Fermi, Valentina ;
von Deimling, Andreas ;
Herold-Mende, Christel ;
Mallm, Jan-Philipp ;
Herrmann, Carl ;
Wick, Wolfgang ;
Turcan, Sevin .
ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2019, 7 (01) :201
[4]   The genetic basis and cell of origin of mixed phenotype acute leukaemia [J].
Alexander, Thomas B. ;
Gu, Zhaohui ;
Iacobucci, Ilaria ;
Dickerson, Kirsten ;
Choi, John K. ;
Xu, Beisi ;
Payne-Turner, Debbie ;
Yoshihara, Hiroki ;
Loh, Mignon L. ;
Horan, John ;
Buldini, Barbara ;
Basso, Giuseppe ;
Elitzur, Sarah ;
de Haas, Valerie ;
Zwaan, C. Michel ;
Yeoh, Allen ;
Reinhardt, Dirk ;
Tomizawa, Daisuke ;
Kiyokawa, Nobutaka ;
Lammens, Tim ;
De Moerloose, Barbara ;
Catchpoole, Daniel ;
Hori, Hiroki ;
Moorman, Anthony ;
Moore, Andrew S. ;
Hrusak, Ondrej ;
Meshinchi, Soheil ;
Orgel, Etan ;
Devidas, Meenakshi ;
Borowitz, Michael ;
Wood, Brent ;
Heerema, Nyla A. ;
Carrol, Andrew ;
Yang, Yung-Li ;
Smith, Malcolm A. ;
Davidsen, Tanja M. ;
Hermida, Leandro C. ;
Gesuwan, Patee ;
Marra, Marco A. ;
Ma, Yussanne ;
Mungall, Andrew J. ;
Moore, Richard A. ;
Jones, Steven J. M. ;
Valentine, Marcus ;
Janke, Laura J. ;
Rubnitz, Jeffrey E. ;
Pui, Ching-Hon ;
Ding, Liang ;
Liu, Yu ;
Zhang, Jinghui .
NATURE, 2018, 562 (7727) :373-+
[5]   The origin and evolution of cell types [J].
Arendt, Detlev ;
Musser, Jacob M. ;
Baker, Clare V. H. ;
Bergman, Aviv ;
Cepko, Connie ;
Erwin, Douglas H. ;
Pavlicev, Mihaela ;
Schlosser, Gerhard ;
Widder, Stefanie ;
Laubichler, Manfred D. ;
Wagner, Gunter P. .
NATURE REVIEWS GENETICS, 2016, 17 (12) :744-757
[6]   Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures [J].
Chan, Thalia E. ;
Stumpf, Michael P. H. ;
Babtie, Ann C. .
CELL SYSTEMS, 2017, 5 (03) :251-+
[7]   Transcriptome-wide noise controls lineage choice in mammalian progenitor cells [J].
Chang, Hannah H. ;
Hemberg, Martin ;
Barahona, Mauricio ;
Ingber, Donald E. ;
Huang, Sui .
NATURE, 2008, 453 (7194) :544-U10
[8]   Effects of Sample Size on Plant Single-Cell RNA Profiling [J].
Chen, Hongyu ;
Lv, Yang ;
Yin, Xinxin ;
Chen, Xi ;
Chu, Qinjie ;
Zhu, Qian-Hao ;
Fan, Longjiang ;
Guo, Longbiao .
CURRENT ISSUES IN MOLECULAR BIOLOGY, 2021, 43 (03) :1685-1697
[9]   Master transcription factors form interconnected circuitry and orchestrate transcriptional networks in oesophageal adenocarcinoma [J].
Chen, Li ;
Huang, Moli ;
Plummer, Jasmine ;
Pan, Jian ;
Jiang, Yan Yi ;
Yang, Qian ;
Silva, Tiago Chedraoui ;
Gull, Nicole ;
Chen, Stephanie ;
Ding, Ling Wen ;
An, Omer ;
Yang, Henry ;
Cheng, Yulan ;
Said, Jonathan W. ;
Doan, Ngan ;
Dinjens, Winand N. M. ;
Waters, Kevin M. ;
Tuli, Richard ;
Gayther, Simon A. ;
Klempner, Samuel J. ;
Berman, Benjamin P. ;
Meltzer, Stephen J. ;
Lin, De-Chen ;
Koeffler, H. Phillip .
GUT, 2020, 69 (04) :630-640
[10]   Exploiting single-cell expression to characterize co-expression replicability [J].
Crow, Megan ;
Paul, Anirban ;
Ballouz, Sara ;
Huang, Z. Josh ;
Gillis, Jesse .
GENOME BIOLOGY, 2016, 17 :101