Deep Dense Model for Classification of Covid-19 in X-ray Images

被引:2
作者
Alsabban, Wesam H. [1 ]
Ahmad, Fareed [2 ]
Al-Laith, Ali [3 ]
Kabrah, Saeed M. [4 ]
Boghdadi, Mohammed A. [5 ]
Masud, Farhan [6 ]
机构
[1] Umm Al Qura Univ, Fac Comp & Informat Syst, Informat Syst Dept, Mecca, Saudi Arabia
[2] Univ Vet & Anim Sci, Fac Vet Sci, Inst Microbiol, Qual Operat Lab, Lahore, Pakistan
[3] Univ Engn & Technol, Alkhawarizmi Inst Comp Sci, Ctr Language Engn, Lahore, Pakistan
[4] Umm Al Qura Univ, Fac Appl Med Sci, Lab Med Dept, Mecca, Saudi Arabia
[5] King Faisal Specialist Hosp & Res Ctr KFSH&RC, Jeddah, Saudi Arabia
[6] Univ Vet & Anim Sci, Fac Life Sci Business Management, Dept Stat & Comp Sci, Lahore, Pakistan
来源
INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY | 2022年 / 22卷 / 01期
关键词
Deep learning models; dense model; fine-tuning; augmentation; transfer learning; COVID-19; classification; coronavirus; FEATURES;
D O I
10.22937/IJCSNS.2022.22.1.56
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Novel Coronavirus, SARS-CoV-2, can be fatal for humans and animals. The ease of its propagation, with its extraordinary ability to cause disease and even death in humans, makes it a hazard to humanity. Chest X-ray is the most popular but difficult to apprehend radiographic analysis for immediate diagnosis of COVID-19. It yields significant anatomical and physiological information. However, extracting the appropriate information from it is seldom difficult, even for radiologists. Deep CNN architectures can assist in reliable, swift, and accurate results. We propose a deep dense model fine-tuned from scratch and statistically analyzed its results using paired two-sided t-test with state-of-the-art deep learning models, namely, SqueezeNet, AlexNet, DenseNet201, and MobileNetV2. Current datasets are limited and generally unbalanced. However, we devised a larger and well-balanced dataset for training the model. Moreover, as the dataset is still not significant, thus data augmentation and finetuning approaches are employed to evade overfitting and generate a better-generalized model. Our deep dense model produces better performance from analyzed deep learning models to generate Specificity, Recall, FScore, and Accuracy of 97.33%, 92.01%, 92.00%, and 96.01%, when trained on a significantly larger and balanced dataset, while employing 5- Folds cross-validation. The statistical analysis also shows that our model is better than its competing methods. Our deep model can help radiologists in the correct identification of COVID-19 in X-rays. That can contribute toward speedy and reliable diagnosis, thereby saving precious lives and minimizing the socio-economic burden on society.
引用
收藏
页码:429 / 442
页数:14
相关论文
共 50 条
  • [31] Deep CNN models for predicting COVID-19 in CT and x-ray images
    Chaddad, Ahmad
    Hassan, Lama
    Desrosiers, Christian
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (S1)
  • [32] New Optimized Deep Learning Application for COVID-19 Detection in Chest X-ray Images
    Karim, Ahmad Mozaffer
    Kaya, Hilal
    Alcan, Veysel
    Sen, Baha
    Hadimlioglu, Ismail Alihan
    SYMMETRY-BASEL, 2022, 14 (05):
  • [33] Automatic COVID-19 Detection Using Exemplar Hybrid Deep Features with X-ray Images
    Barua, Prabal Datta
    Gowdh, Nadia Fareeda Muhammad
    Rahmat, Kartini
    Ramli, Norlisah
    Ng, Wei Lin
    Chan, Wai Yee
    Kuluozturk, Mutlu
    Dogan, Sengul
    Baygin, Mehmet
    Yaman, Orhan
    Tuncer, Turker
    Wen, Tao
    Cheong, Kang Hao
    Acharya, U. Rajendra
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (15)
  • [34] LightMobileNetV2: A Lightweight Model for the Classification of COVID-19 Using Chest X-Ray Images
    Garg, Shankey
    Singh, Pradeep
    INFORMATION SYSTEMS AND MANAGEMENT SCIENCE, ISMS 2021, 2023, 521 : 142 - 150
  • [35] Metaheuristic Optimization Through Deep Learning Classification of COVID-19 in Chest X-Ray Images
    Samee, Nagwan Abdel
    El-Kenawy, El-Sayed M.
    Atteia, Ghada
    Jamjoom, Mona M.
    Ibrahim, Abdelhameed
    Abdelhamid, Abdelaziz A.
    El-Attar, Noha E.
    Gaber, Tarek
    Slowik, Adam
    Shams, Mahmoud Y.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 4193 - 4210
  • [36] An Interpretable Deep Learning Model for Covid-19 Detection With Chest X-Ray Images
    Singh, Gurmail
    Yow, Kin-Choong
    IEEE ACCESS, 2021, 9 : 85198 - 85208
  • [37] Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images
    Escorcia-Gutierrez, Jose
    Gamarra, Margarita
    Soto-Diaz, Roosvel
    Alsafari, Safa
    Yafoz, Ayman
    Mansour, Romany F.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5255 - 5270
  • [38] Classification of COVID-19 in Chest X-ray Images Using Fusion of Deep Features and LightGBM
    Nasiri, Hamid
    Kheyroddin, Ghazal
    Dorrigiv, Morteza
    Esmaeili, Mona
    Nafchi, Amir Raeisi
    Ghorbani, Mohsen Haji
    Zarkesh-Ha, Payman
    2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 201 - 206
  • [39] Evaluation of deep learning-based approaches for COVID-19 classification based on chest X-ray images
    KC, Kamal
    Yin, Zhendong
    Wu, Mingyang
    Wu, Zhilu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (05) : 959 - 966
  • [40] Evaluation of deep learning-based approaches for COVID-19 classification based on chest X-ray images
    Kamal KC
    Zhendong Yin
    Mingyang Wu
    Zhilu Wu
    Signal, Image and Video Processing, 2021, 15 : 959 - 966