Physics-Based Potentials for Coarse-Grained Modeling of Protein DNA Interactions

被引:14
|
作者
Yin, Yanping [1 ]
Sieradzan, Adam K. [1 ,2 ]
Liwo, Adam [2 ]
He, Yi [1 ]
Scheraga, Harold A. [1 ]
机构
[1] Cornell Univ, Baker Lab Chem & Chem Biol, Ithaca, NY 14850 USA
[2] Univ Gdansk, Fac Chem, PL-80308 Gdansk, Poland
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
UNRES FORCE-FIELD; ACID SIDE-CHAINS; STRUCTURE PREDICTION; ANALYTICAL FORMULAS; MEAN FORCE; SIMULATIONS; OPTIMIZATION; MUTATIONS; DYNAMICS;
D O I
10.1021/ct5009558
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Physics-based potentials have been developed for the interactions between proteins and DNA for simulations with the UNRES + NARES-2P force field. The mean-field interactions between a protein and a DNA molecule can be divided into eight categories: (1) nonpolar side chain-DNA base, (2) polar uncharged side chain-DNA base, (3) charged side chain-DNA base, (4) peptide group-phosphate group, (5) peptide group-DNA base, (6) nonpolar side chain-phosphate group, (7) polar uncharged side chain-phosphate group, and (8) charged side chain-phosphate group. Umbrella-sampling molecular dynamics simulations in explicit TIP3P water using the AMBER force field were carried out to determine the potentials of mean force (PMF) for all 105 pairs of interacting components. Approximate analytical expressions for the mean-field interaction energy of each pair of the different kinds of interacting molecules were then fitted to the PMFs to obtain the parameters of the analytical expressions. These analytical expressions can reproduce satisfactorily the PMF curves corresponding to different orientations of the interacting molecules. The results suggest that the physics-based mean-field potentials of amino acid-nucleotide interactions presented here can be used in coarse-grained simulation of protein-DNA interactions.
引用
收藏
页码:1792 / 1808
页数:17
相关论文
共 50 条
  • [1] Coarse-grained modeling of protein unspecifically bound to DNA
    Guardiani, Carlo
    Cencini, Massimo
    Cecconi, Fabio
    PHYSICAL BIOLOGY, 2014, 11 (02)
  • [2] Combining coarse-grained nonbonded and atomistic bonded interactions for protein modeling
    Zacharias, Martin
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2013, 81 (01) : 81 - 92
  • [3] Toward Consistent Physics-Based Modeling of Local Backbone Structures and Chirality Change of Proteins in Coarse-Grained Approaches
    Lipska, Agnieszka G.
    Sieradzan, Adam K.
    Atmaca, Su''meyye
    Czaplewski, Cezary
    Liwo, Adam
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (44) : 9824 - 9833
  • [4] Local and long range potentials for heparin-protein systems for coarse-grained simulations
    Samsonov, Sergey A.
    Lubecka, Emilia A.
    Bojarski, Krzysztof K.
    Ganzynkowicz, Robert
    Liwo, Adam
    BIOPOLYMERS, 2019, 110 (08)
  • [5] A coarse-grained approach to NMR-data-assisted modeling of protein structures
    Lubecka, Emilia A.
    Liwo, Adam
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2022, 43 (31) : 2047 - 2059
  • [6] SURPASS Low-Resolution Coarse-Grained Protein Modeling
    Dawid, Aleksandra E.
    Gront, Dominik
    Kolinski, Andrzej
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (11) : 5766 - 5779
  • [7] Coarse-Grained Potentials for Local Interactions in Unfolded Proteins
    Ghavami, Ali
    van der Giessen, Erik
    Onck, Patrick R.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (01) : 432 - 440
  • [8] pyDockCG: New Coarse-Grained Potential for Protein Protein Docking
    Solernou, Albert
    Fernandez-Recio, Juan
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (19) : 6032 - 6039
  • [9] Machine learning coarse-grained potentials of protein thermodynamics
    Majewski, Maciej
    Perez, Adria
    Tholke, Philipp
    Doerr, Stefan
    Charron, Nicholas E.
    Giorgino, Toni
    Husic, Brooke E.
    Clementi, Cecilia
    Noe, Frank
    De Fabritiis, Gianni
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [10] Coarse-grained modeling of the calcium, sodium, magnesium and potassium cations interacting with proteins
    Lipska, Agnieszka G.
    Antoniak, Anna M.
    Wesolowski, Patryk
    Warszawski, Alan
    Samsonov, Sergey A.
    Sieradzan, Adam K.
    JOURNAL OF MOLECULAR MODELING, 2022, 28 (07)