Wigner operator and squeezing for rotated quadrature phases

被引:13
|
作者
Fan, HY [1 ]
Xiao, M [1 ]
机构
[1] UNIV ARKANSAS,DEPT PHYS,FAYETTEVILLE,AR 72701
来源
MODERN PHYSICS LETTERS B | 1996年 / 10卷 / 20期
关键词
D O I
10.1142/S0217984996001127
中图分类号
O59 [应用物理学];
学科分类号
摘要
We introduce the Wigner operator <(Delta)over cap (theta)>(x, p) for the rotated quadrature phases and use the technique of integration within an ordered product of operators to derive its explicitly simpler form. Based on this, the mutual relations between <(Delta)over cap (theta)>(x, p) and the corresponding marginal probability distribution operator can be easily revealed. The Wigner function theory is thus be recasted into a more elegant and concise formalism. The squeezing in rotated quadrature phase is discussed with the same method.
引用
收藏
页码:989 / 998
页数:10
相关论文
共 50 条
  • [41] OBSERVATION OF QUADRATURE SQUEEZING IN A CAVITY-ATOM SYSTEM
    HOPE, DM
    BACHOR, HA
    MANSON, PJ
    MCCLELLAND, DE
    FISK, PTH
    PHYSICAL REVIEW A, 1992, 46 (03): : R1181 - R1184
  • [42] Squeezing and higher-order squeezing properties of eigenstates of the operator αqsk
    Wang, Jisuo
    Sun, Changyong
    Chinese Journal of Lasers B (English Edition), 1997, B6 (03): : 223 - 228
  • [43] The Squeezing Operator and the Squeezed States of "Superspace
    SUN Changyou (Department of Physics
    Chinese Journal of Lasers, 1996, (02) : 129 - 136
  • [44] Quadrature squeezing and temperature estimation from the Fock distribution
    Bezerra, Italo Pereira
    Vasconcelos, Hilma M.
    Glancy, Scott
    QUANTUM INFORMATION PROCESSING, 2022, 21 (11)
  • [45] Radon transforms of the Wigner operator on hyperplanes
    陈俊华
    范洪义
    Chinese Physics B, 2009, (09) : 3714 - 3718
  • [46] Operator formalism for the Wigner phase distribution
    Subeesh, T.
    Sudhir, Vivishek
    JOURNAL OF MODERN OPTICS, 2011, 58 (09) : 761 - 765
  • [47] Parametric generation of quadrature squeezing of mirrors in cavity optomechanics
    Liao, Jie-Qiao
    Law, C. K.
    PHYSICAL REVIEW A, 2011, 83 (03):
  • [49] General Wigner transforms studied by virtue of Weyl ordering of the Wigner operator
    Fan, HY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 40 (04) : 409 - 414
  • [50] Radon transforms of the Wigner operator on hyperplanes
    Chen Jun-Hua
    Fan Hong-Yi
    CHINESE PHYSICS B, 2009, 18 (09) : 3714 - 3718