Wigner operator and squeezing for rotated quadrature phases

被引:13
|
作者
Fan, HY [1 ]
Xiao, M [1 ]
机构
[1] UNIV ARKANSAS,DEPT PHYS,FAYETTEVILLE,AR 72701
来源
MODERN PHYSICS LETTERS B | 1996年 / 10卷 / 20期
关键词
D O I
10.1142/S0217984996001127
中图分类号
O59 [应用物理学];
学科分类号
摘要
We introduce the Wigner operator <(Delta)over cap (theta)>(x, p) for the rotated quadrature phases and use the technique of integration within an ordered product of operators to derive its explicitly simpler form. Based on this, the mutual relations between <(Delta)over cap (theta)>(x, p) and the corresponding marginal probability distribution operator can be easily revealed. The Wigner function theory is thus be recasted into a more elegant and concise formalism. The squeezing in rotated quadrature phase is discussed with the same method.
引用
收藏
页码:989 / 998
页数:10
相关论文
共 50 条
  • [31] From Wigner hyperbolic rotation to fractional squeezing transformation
    Wu, Wei-Feng
    Fu, Peng
    Hu, Hua-Kui
    HELIYON, 2024, 10 (06)
  • [32] Adaption of fractional squeezing transformation to optical Wigner transformation
    Lv, Cui-hong
    Cai, Ya-xin
    Wang, Ya-wei
    OPTIK, 2016, 127 (08): : 4057 - 4060
  • [33] The Squeezing Effect of Three-Mode Operator as an Extension from Two-Mode Squeezing Operator
    Xu, Xue-xiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (07) : 2056 - 2065
  • [34] QUADRATURE SQUEEZING AND INFORMATION ENTROPY SQUEEZING IN NONLINEAR TWO-LEVEL SPIN MODELS
    Grinberg, Horacio
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (09): : 1079 - 1092
  • [35] AMPLITUDE SQUEEZING THROUGH OPERATOR SCALING
    DARIANO, GM
    INSTITUTE OF PHYSICS CONFERENCE SERIES, 1991, (115): : 73 - 76
  • [36] Quadrature squeezing of the mechanical mode in a superconducting electromechanical system
    Wang, Yi-Ping
    Zhang, Zhu-Cheng
    Yu, Ya-Fei
    Zhang, Zhi-Ming
    LASER PHYSICS LETTERS, 2019, 16 (01)
  • [37] Optomechanical quadrature squeezing in the non-Markovian regime
    Xiong, Biao
    Li, Xun
    Chao, Shi-Lei
    Zhou, Ling
    OPTICS LETTERS, 2018, 43 (24) : 6053 - 6056
  • [38] Quadrature squeezing and temperature estimation from the Fock distribution
    Italo Pereira Bezerra
    Hilma M. Vasconcelos
    Scott Glancy
    Quantum Information Processing, 21
  • [39] Quadrature and polarization squeezing in a dispersive optical bistability model
    Garcia-Ferrer, Ferran V.
    Perez-Arjona, Isabel
    de Valcarcel, German J.
    Roldan, Eugenio
    PHYSICAL REVIEW A, 2007, 75 (06):
  • [40] Squeezing quadrature rotation in the acoustic band via optomechanics
    Guccione, Giovanni
    Slatyer, Harry J.
    Carvalho, Andre R. R.
    Buchler, Ben C.
    Lam, Ping Koy
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (06)