Statistical approximation properties of high order operators constructed with the Chan-Chyan-Srivastava polynomials

被引:13
作者
Erkus-Duman, Esra [1 ]
Duman, Oktay [2 ]
机构
[1] Gazi Univ, Fac Arts & Sci, Dept Math, TR-06500 Ankara, Turkey
[2] TOBB Econ & Technol Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey
关键词
Chan-Chyan-Srivastava multivariable polynomials; A-statistical convergence; A-statistical rates; The Korovkin theorem; Modulus of continuity; POSITIVE LINEAR-OPERATORS; ZELLER TYPE OPERATORS; LAGRANGE POLYNOMIALS; MEYER-KONIG; CONVERGENCE; VARIABLES; THEOREMS; RATES;
D O I
10.1016/j.amc.2011.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by including high order derivatives of functions being approximated, we introduce a general family of the linear positive operators constructed by means of the Chan-Chyan-Srivastava multivariable polynomials and study a Korovkin-type approximation result with the help of the concept of A-statistical convergence, where A is any non-negative regular summability matrix. We obtain a statistical approximation result for our operators, which is more applicable than the classical case. Furthermore, we study the A-statistical rates of our approximation via the classical modulus of continuity. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1927 / 1933
页数:7
相关论文
共 26 条
  • [1] On a multivariable extension for the extended Jacobi polynomials
    Altin, Abdullah
    Aktas, Rabia
    Erkus-Duman, Esra
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (01) : 121 - 133
  • [2] A Baskakov type generalization of statistical Korovkin theory
    Anastassiou, George A.
    Duman, Oktay
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 476 - 486
  • [3] [Anonymous], TREATISE GENERATING
  • [4] [Anonymous], 1955, HIGHER TRANSCENDENTA
  • [5] Boos J., 2000, CLASSICAL MODERN MET
  • [6] The Lagrange polynomials in several variables
    Chan, WCC
    Chyan, CJ
    Srivastava, HM
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2001, 12 (02) : 139 - 148
  • [7] Some new results for the Lagrange polynomials in several variables
    Chen, Kung-Yu
    Liu, Shuoh-Jung
    Srivastava, H. M.
    [J]. ANZIAM JOURNAL, 2007, 49 : 243 - 258
  • [8] Statistical approximation by generalized Meyer-Konig and Zeller type operators
    Dogru, O
    Duman, O
    Orhan, C
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2003, 40 (03) : 359 - 371
  • [9] Duman O, 2003, MATH INEQUAL APPL, V6, P689
  • [10] Duman O, 2008, TAIWAN J MATH, V12, P523