Divergence and quasimorphisms of right-angled Artin groups

被引:76
作者
Behrstock, Jason [2 ]
Charney, Ruth [1 ]
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02453 USA
[2] CUNY Bronx, Dept Math, Lehman Coll, Bronx, NY 10468 USA
关键词
BOUNDED COHOMOLOGY; LATTICES;
D O I
10.1007/s00208-011-0641-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a group theoretic characterization of geodesics with superlinear divergence in the Cayley graph of a right-angled Artin group A (I") with connected defining graph. We use this to prove that the divergence of A (I") is linear if I" is a join and quadratic otherwise. As an application, we give a complete description of the cut points in any asymptotic cone of A (I"). We also show that every non-abelian subgroup of A (I") has an infinite-dimensional space of non-trivial quasimorphisms.
引用
收藏
页码:339 / 356
页数:18
相关论文
共 31 条
[1]  
Abrams A., 2010, ARXIV10044253
[2]  
[Anonymous], 1999, METRIC SPACES NONPOS
[3]   Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity [J].
Behrstock, Jason ;
Drutu, Cornelia ;
Mosher, Lee .
MATHEMATISCHE ANNALEN, 2009, 344 (03) :543-595
[4]   Asymptotic geometry of the mapping class group and Teichmuller space [J].
Behrstock, Jason A. .
GEOMETRY & TOPOLOGY, 2006, 10 :1523-1578
[5]   Morse theory and finiteness properties of groups [J].
Bestvina, M ;
Brady, N .
INVENTIONES MATHEMATICAE, 1997, 129 (03) :445-470
[6]   Bounded cohomology of subgroups of mapping class groups [J].
Bestvina, Mladen ;
Fujiwara, Koji .
GEOMETRY & TOPOLOGY, 2002, 6 :69-89
[7]   A CHARACTERIZATION OF HIGHER RANK SYMMETRIC SPACES VIA BOUNDED COHOMOLOGY [J].
Bestvina, Mladen ;
Fujiwara, Koji .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (01) :11-40
[8]   Continuous bounded cohomology and applications to rigidity theory [J].
Burger, M ;
Monod, N .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) :219-280
[9]  
Burger M., 1999, J EUR MATH SOC, V1, P199, DOI DOI 10.1007/S100970050007
[10]  
Calegari D., 2009, MSJ Memoirs, V20