Pull-in urea cycle for the production of fumaric acid in Escherichia coli

被引:116
|
作者
Zhang, Ting [1 ]
Wang, Zening [1 ]
Deng, Li [2 ]
Tan, Tianwei [1 ]
Wang, Fang [1 ]
Yan, Yajun [3 ]
机构
[1] Beijing Univ Chem Technol, Beijing Bioproc Key Lab, Coll Life Sci & Technol, Beijing 100029, Peoples R China
[2] Amoy BUCT Ind Biotechnovat Inst, Amoy 361022, Peoples R China
[3] Univ Georgia, Coll Engn, Biochem Engn Program, Athens, GA 30602 USA
关键词
Fumaric acid; Escherichia coli; Urea cycle; Metabolic analysis; GENE-PRODUCTS; ARCA; BIOSYNTHESIS; REPRESSION; GLUCOSE; OXYGEN; IRON;
D O I
10.1007/s00253-015-6556-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Fumaric acid (FA) is an important raw material in the chemical and pharmaceutical industries. In this work, Escherichia coli was metabolically engineered for the production of FA. The fumA, fumB, fumC, and frdABCD genes were deleted to cut off the downstream pathway of FA. In addition, the iclR and arcA genes were also deleted to activate the glyoxylate shunt and to reinforce the oxidative Krebs cycle. To increase the FA yield, this base strain was further engineered to be pulled in the urea cycle by overexpressing the native carAB, argI, and heterologous rocF genes. The metabolites and the proteins of the Krebs cycle and the urea cycle were analyzed to confirm that the induced urea cycle improved the FA accumulation. With the induced urea cycle, the resulting strain ABCDIA-RAC was able to produce 11.38 mmol/L of FA from 83.33 mmol/L of glucose in a flask culture during 24 h of incubation.
引用
收藏
页码:5033 / 5044
页数:12
相关论文
共 50 条
  • [11] Metabolic Engineering of Escherichia coli for Production of Butyric Acid
    Saini, Mukesh
    Wang, Zei Wen
    Chiang, Chung-Jen
    Chao, Yun-Peng
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2014, 62 (19) : 4342 - 4348
  • [12] Enhancing glutaric acid production in Escherichia coli by uptake of malonic acid
    Sui, Xue
    Zhao, Mei
    Liu, Yingli
    Wang, Jing
    Li, Guohui
    Zhang, Xiaojuan
    Deng, Yu
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2020, 47 (03) : 311 - 318
  • [13] Optimization of Aerobic Synthesis of Fumaric Acid from Glucose by a Recombinant Escherichia coli Strain Functioning in a Whole-Cell Biocatalyst Mode
    Skorokhodova, A. Yu.
    Stasenko, A. A.
    Gulevich, A. Yu.
    APPLIED BIOCHEMISTRY AND MICROBIOLOGY, 2024, 60 (06) : 1096 - 1103
  • [14] Fermentation Characteristics of Engineered Escherichia coli for Succinic Acid Production
    Zhao, Jinfang
    Hua, Bowen
    Wang, Yongze
    Liu, Zao
    Wang, Jinhua
    Zhou, Shengde
    2013 INTERNATIONAL CONFERENCE ON MATERIALS FOR RENEWABLE ENERGY AND ENVIRONMENT (ICMREE), VOLS 1-3, 2013, : 982 - 985
  • [15] Production of caffeoylmalic acid from glucose in engineered Escherichia coli
    Li, Tianzhen
    Zhou, Wei
    Bi, Huiping
    Zhuang, Yibin
    Zhang, Tongcun
    Liu, Tao
    BIOTECHNOLOGY LETTERS, 2018, 40 (07) : 1057 - 1065
  • [16] Enhanced production of polysialic acid by metabolic engineering of Escherichia coli
    Chen, Fang
    Tao, Yong
    Jin, Cheng
    Xu, Yang
    Lin, Bai-Xue
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (06) : 2603 - 2611
  • [17] Metabolic engineering strategies for caffeic acid production in Escherichia coli
    Hernandez-Chavez, Georgina
    Martinez, Alfredo
    Gosset, Guillermo
    ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2019, 38 (01): : 19 - 26
  • [18] Heterologous production of caffeic acid from tyrosine in Escherichia coli
    Rodrigues, J. L.
    Araujo, R. G.
    Prather, K. L. J.
    Kluskens, L. D.
    Rodrigues, L. R.
    ENZYME AND MICROBIAL TECHNOLOGY, 2015, 71 : 36 - 44
  • [19] Production of extracellular fatty acid using engineered Escherichia coli
    Liu, Hui
    Yu, Chao
    Feng, Dexin
    Cheng, Tao
    Meng, Xin
    Liu, Wei
    Zou, Huibin
    Xian, Mo
    MICROBIAL CELL FACTORIES, 2012, 11
  • [20] Efficient Malic Acid Production in Escherichia coli Using a Synthetic Scaffold Protein Complex
    Somasundaram, Sivachandiran
    Eom, Gyeong Tae
    Hong, Soon Ho
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2018, 184 (04) : 1308 - 1318