Two aromatic co-polyamides were synthesized combining two diacid monomers containing bulky pendant groups, 5-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)isophthalic acid (DEAIA) and 5-tert-butylisophthalic acid (TERT), with 4,4-(hexafluoroisopropylidene)dianiline (HFA) or 2,3,5,6-tetramethyl-1,4-phenylenediamine (Durene) by direct polycondensation. The structures of the obtained aromatic co-polyamides were confirmed by FTIR, Raman and H-1-NMR. The co-copolyamide films, DHTH and DDTD, exhibited rms-roughness values between 0.94 and 1.60 nm, respectively. Moreover, they presented good thermal stability up to 300 degrees C. Young's moduli of the co-polyamide films were between 4.1 and 4.3 GPa. X-ray diffraction results showed that the co-polyamide films were amorphous due to the incorporation of both bulky pendant groups, tert-butyl and dibenzobarrelene. The combination of bulky pendant groups provided intrinsically transparent co-polyamide films with a transmittance higher than 88% in the range of 400-780 nm. Due to these outstanding film and optical properties, they are suggested to be flexible substrates in applications for solar cell and other portable electronic devices.