NON-LINEAR NOISE EXCITATION AND INTERMITTENCY UNDER HIGH DISORDER

被引:16
|
作者
Khoshnevisan, Davar [1 ]
Kim, Kunwoo [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
Stochastic heat equation; stochastic wave equation; intermittency; non-linear noise excitation; DIFFUSION;
D O I
10.1090/S0002-9939-2015-12517-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the semilinear heat equation partial derivative(t)u = partial derivative(2)(x)u + lambda sigma(u)xi on the interval [0, L] with Dirichlet zero-boundary condition and a nice non-random initial function, where the forcing xi is space-time white noise and lambda > 0 denotes the level of the noise. We show that, when the solution is intermittent [that is, when inf(z) vertical bar sigma(z)/z vertical bar > 0], the expected L-2-energy of the solution grows at least as exp{c lambda(2)} and at most as exp{c lambda(4)} as lambda -> infinity. In the case that the Dirichlet boundary condition is replaced by a Neumann boundary condition, we prove that the L-2-energy of the solution is in fact of sharp exponential order exp{c lambda(4)}. We show also that, for a large family of one-dimensional randomly forced wave equations on R, the energy of the solution grows as exp{c lambda} as lambda -> infinity. Thus, we observe the surprising result that the stochastic wave equation is, quite typically, significantly less noise-excitable than its parabolic counterparts.
引用
收藏
页码:4073 / 4083
页数:11
相关论文
共 50 条
  • [31] Label Free Linear and Non-Linear Excitation Nanoscopy
    Korobchevskaya, Kseniya
    Peres, Chiara
    D'Autilia, Francesca
    Mazumder, Nirmal
    Lanzano, Luca
    Saggau, Peter
    Sheppard, Colin J. R.
    Diaspro, Alberto
    Bianchini, Paolo
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 482A - 482A
  • [32] NON-LINEAR FILTRATION OF STRUCTURE NOISE
    SABIROV, ZA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1983, 26 (09): : 87 - 89
  • [33] THE NON-LINEAR PROPAGATION OF ACOUSTIC NOISE
    SCOTT, JF
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 383 (1784): : 55 - 70
  • [34] THE NON-LINEAR NOISE OF PHASE HOLOGRAMS
    KLUGE, G
    LIEBMANN, G
    JOURNAL FUR SIGNALAUFZEICHNUNGSMATERIALIEN, 1981, 9 (02): : 85 - 106
  • [35] Non-linear vibration absorber for a system under sinusoidal and random excitation: Experiments
    Cuvalci, O
    Ertas, A
    Ekwaro-Osire, S
    Cicek, I
    JOURNAL OF SOUND AND VIBRATION, 2002, 249 (04) : 701 - 718
  • [36] Instability of planar oscillations in a certain non-linear system under random excitation
    Dimentberg, MF
    Iourtchenko, DV
    JOURNAL OF SOUND AND VIBRATION, 2000, 233 (01) : 175 - 177
  • [38] Non-linear dynamics of spur gear pair under external periodic excitation
    Li, Yinggang
    Chen, Tianning
    Wang, Xiaopeng
    Yu, Kunpeng
    Zhou, Han
    Zhang, Zhe
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2014, 48 (01): : 101 - 105
  • [39] RANDOM EXCITATION OF A NON-LINEAR SYSTEM WITH HYSTERESIS
    BOUC, R
    ACUSTICA, 1966, 17 (06): : 357 - &
  • [40] EFFECT OF THE NON-LINEAR PARAMETRIC EXCITATION.
    Tondl, A.
    Acta Technica CSAV (Ceskoslovensk Akademie Ved), 1985, 30 (06): : 640 - 649