Time-optimal synthesis for left-invariant control systems on SO(3)

被引:33
|
作者
Boscain, U
Chitour, Y
机构
[1] SISSA, ISAS, I-34014 Trieste, Italy
[2] Univ Paris 11, Signaux & Syst Lab, Supelec, F-91190 Gif Sur Yvette, France
关键词
optimal control; optimal synthesis; minimum time; SO(3);
D O I
10.1137/S0363012904441532
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider the control system (Sigma) given by (x) over dot = x( f + ug), where x is an element of SO(3), | u| <= 1, and f, g is an element of so(3) define two perpendicular left-invariant vector fields normalized so that parallel to f parallel to = cos(alpha) and parallel to g parallel to = sin(alpha), alpha is an element of]0, pi/4[. In this paper, we provide an upper bound and a lower bound for N(alpha), the maximum number of switchings for time-optimal trajectories of (Sigma). More precisely, we show that N-S(alpha) <= N(alpha) <= N-S(alpha) + 4, where N-S(alpha) is a suitable integer function of alpha such that N-S(alpha) alpha (-->) over bar )over tilde>0 pi/(4 alpha). The result is obtained by studying the time-optimal synthesis of a projected control problem on RP2, where the projection is defined by an appropriate Hopf fibration. Finally, we study the projected control problem on the unit sphere S-2. It exhibits interesting features which will be partly rigorously derived and partially described by numerical simulations.
引用
收藏
页码:111 / 139
页数:29
相关论文
共 50 条
  • [31] Time-optimal control of a self-propelled particle in a spatiotemporal flow field
    Bakolas, Efstathios
    Marchidan, Andrei
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (03) : 623 - 634
  • [32] Bond graph formulation of an optimal control problem for linear time invariant systems
    Marquis-Favre, Wilfrid
    Mouhib, Omar
    Chereji, Bogdan
    Thomasset, Daniel
    Pousin, Jerome
    Picq, Martine
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2008, 345 (04): : 349 - 373
  • [33] Data-Driven Optimal Control of Linear Time-Invariant Systems
    Kastsiukevich, Dzmitry
    Dmitruk, Natalia
    IFAC PAPERSONLINE, 2020, 53 (02): : 7191 - 7196
  • [34] Time-optimal velocity control of a motor-vehicle with CVT
    Stoicescu, AP
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2002, 30 (04) : 327 - 361
  • [35] Time-optimal control of automobile test drives with gear shifts
    Kirches, Christian
    Sager, Sebastian
    Bock, Hans Georg
    Schloeder, Johannes P.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2010, 31 (02) : 137 - 153
  • [36] Time-Optimal Arriving Control of Material Point in Multidimensional Space
    Meda-Campana, J. A.
    Nosov, V. R.
    Gomez-Mancilla, J. C.
    2009 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATION CONTROL (CCE 2009), 2009, : 291 - 295
  • [37] Time-optimal control of diafiltration processes in the presence of membrane fouling
    Jelemensky, Martin
    Sharma, Ayush
    Paulen, Radoslav
    Fikar, Miroslav
    COMPUTERS & CHEMICAL ENGINEERING, 2016, 91 : 343 - 351
  • [38] Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem
    A. R. Danilin
    O. O. Kovrizhnykh
    Proceedings of the Steklov Institute of Mathematics, 2018, 303 : 60 - 69
  • [39] Time-optimal Control Policy for a Hybrid Electric Race Car
    Salazar, Mauro
    Elbert, Philipp
    Ebbesen, Soren
    Bussi, Carlo
    Onder, Christopher H.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (06) : 1921 - 1934
  • [40] Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem
    Danilin, A. R.
    Kovrizhnykh, O. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 303 : 60 - 69