Pellet charge exchange measurements of confined alphas in deuterium-tritium plasmas, invited (abstract)

被引:0
|
作者
Fisher, RK [1 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 1999年 / 70卷 / 01期
关键词
D O I
10.1063/1.1149453
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Alpha particle confinement is essential to achieving ignition in deuterium-tritium plasmas, and measuring the energy and spatial distributions of fusion alphas is one of the most challenging tasks in plasma diagnostics research. Confined trapped-alpha energy spectra and radial density profiles in the Tokamak Fusion Test Reactor (TFTR) have been obtained using the pellet charge exchange (PCX) diagnostic, which measures high energy (Eα=0.5-3.5 MeV), trapped alphas (|ν∥/ν|=0.048) at a single time slice (Δt∼1 ms) with a spatial resolution of Δr∼5 cm. PCX measures the energy spectrum of energetic helium neutrals resulting from charge exchange interactions of alphas incident on the ablation cloud surrounding small boron and lithium pellets injected radially into TFTR. The success of PCX has led to a number of important results on the behavior of alphas in TFTR. The measured alpha energy spectrum in the plasma core of sawtooth-free discharges is consistent with the alphas being well confined and slowing down classically. Outside the plasma core, the trapped alphas show the effects of stochastic diffusion due to the toroidal magnetic field ripple, with the PCX measured profiles consistent with the functional dependence of the stochastic ripple diffusion on the alpha energy and the q profile. Large sawtooth instabilities result in radial redistribution of the trapped alphas to well outside the q = 1 radius and beyond the stochastic ripple loss boundary. Broadening of the radial profiles of trapped alphas is also observed in reversed and reduced shear discharges on TFTR, with potential implications for reactor designs based on optimized shear configurations. Finally, radial redistribution of trapped alpha particles in the presence of core localized Toroidal Alfv́en Eigenmode activity is also observed. Application of PCX measurements to future experiments, including the International Thermonuclear Experimental Reactor will also be discussed. © 1999 American Institute of Physics.
引用
收藏
页码:974 / 974
页数:1
相关论文
共 50 条
  • [21] ALPHA-PARTICLE INFORMATION ON BURNING DEUTERIUM-TRITIUM PLASMAS FROM NEUTRON MEASUREMENTS
    KALLNE, J
    GORINI, G
    FUSION TECHNOLOGY, 1992, 22 (04): : 439 - 453
  • [22] Measurements of collective fuel velocities in deuterium-tritium exploding pusher and cryogenically layered deuterium-tritium implosions on the NIF
    Johnson, M. Gatu
    Casey, D. T.
    Frenje, J. A.
    Li, C-K.
    Seguin, F. H.
    Petrasso, R. D.
    Ashabranner, R.
    Bionta, R.
    LePape, S.
    McKernan, M.
    Mackinnon, A.
    Kilkenny, J. D.
    Knauer, J.
    Sangster, T. C.
    PHYSICS OF PLASMAS, 2013, 20 (04)
  • [23] THE PHYSICS OF BURN IN MAGNETIZED DEUTERIUM-TRITIUM PLASMAS - SPHERICAL GEOMETRY
    JONES, RD
    MEAD, WC
    NUCLEAR FUSION, 1986, 26 (02) : 127 - 137
  • [24] High fusion performance from deuterium-tritium plasmas in JET
    Keilhacker, M
    Gibson, A
    Gormezano, C
    Lomas, PJ
    Thomas, PR
    Watkins, ML
    Andrew, P
    Balet, B
    Borba, D
    Challis, CD
    Coffey, I
    Cottrell, GA
    De Esch, HPL
    Deliyanakis, N
    Fasoli, A
    Gowers, CW
    Guo, HY
    Huysmans, GTA
    Jones, TTC
    Kerner, W
    König, RWT
    Loughlin, MJ
    Maas, A
    Marcus, FB
    Nave, MFF
    Rimini, FG
    Sadler, GJ
    Sharapov, SE
    Sips, G
    Smeulders, P
    Söldner, FX
    Taroni, A
    Tubbing, BJD
    von Hellermann, MG
    Ward, DJ
    NUCLEAR FUSION, 1999, 39 (02) : 209 - 234
  • [25] Impurity behaviour in JET high-current baseline scenario for Deuterium, Tritium and Deuterium-Tritium plasmas
    Wendler, N.
    Chomiczewska, A.
    Gromelski, W.
    Kowalska-Strzeciwilk, E.
    Telesca, G.
    Ivanova-Stanik, I.
    Garzotti, L.
    Van Eester, D.
    Zotta, V. K.
    Frigione, D.
    Rimini, F.
    Pucella, G.
    NUCLEAR MATERIALS AND ENERGY, 2024, 41
  • [26] Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas
    Cazzaniga, C.
    Sunden, E. Andersson
    Binda, F.
    Croci, G.
    Ericsson, G.
    Giacomelli, L.
    Gorini, G.
    Griesmayer, E.
    Grosso, G.
    Kaveney, G.
    Nocente, M.
    Cippo, E. Perelli
    Rebai, M.
    Syme, B.
    Tardocchi, M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (04):
  • [27] Study of impurity behavior in JET-ILW hybrid scenario with deuterium, tritium, and deuterium-tritium plasmas
    Wendler, N.
    Chomiczewska, A.
    Gromelski, W.
    Kowalska-Strzeciwilk, E.
    Ivanova-Stanik, I.
    Challis, C. D.
    Hobirk, J.
    Kappatou, A.
    Lerche, E.
    Carvalho, P.
    Coffey, I.
    Pucella, G.
    Giovannozzi, E.
    PHYSICS OF PLASMAS, 2024, 31 (05)
  • [28] Role of neutron attenuators for gamma-ray measurements in deuterium-tritium magnetic confinement plasmas
    Rigamonti, D.
    Dal Molin, A.
    Gorini, G.
    Marcer, G.
    Nocente, M.
    Rebai, M.
    Craciunescu, T.
    Ghani, Z.
    Kiptily, V.
    Maslov, M.
    Shevelev, A.
    Zohar, A.
    Tardocchi, M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (09):
  • [29] Radiation control in Tritium and Deuterium-Tritium JET baseline plasmas-part II
    Piron, L.
    Van Eester, D.
    Frigione, D.
    Garzotti, L.
    Lomas, P. J.
    Lennholm, M.
    Rimini, F.
    Auriemma, F.
    Baruzzo, M.
    Carvalho, P. J.
    Ferreira, D. R.
    Field, A. R.
    Kirov, K.
    Stancar, Z.
    Stuart, C. I.
    Valcarcel, D.
    Contributors, J. E. T.
    FUSION ENGINEERING AND DESIGN, 2023, 192
  • [30] Fusion product measurements by nuclear diagnostics in the Joint European Torus deuterium-tritium 2 campaign (invited)
    Nocente, M.
    Kiptily, V
    Tardocchi, M.
    Bonofiglo, P. J.
    Craciunescu, T.
    Dal Molin, A.
    De La Luna, E.
    Eriksson, J.
    Garcia, J.
    Ghani, Z.
    Gorini, G.
    Hagg, L.
    Kazakov, Y.
    Lerche, E.
    Maggi, C. F.
    Mantica, P.
    Marcer, G.
    Maslov, M.
    Putignano, O.
    Rigamonti, D.
    Salewski, M.
    Sharapov, S.
    Siren, P.
    Stancar, Z.
    Zohar, A.
    Beaumont, P.
    Crombe, K.
    Ericsson, G.
    Garcia-Munoz, M.
    Keeling, D.
    King, D.
    Kirov, K.
    Nave, M. F. F.
    Ongena, J.
    Patel, A.
    von Thun, C. Perez
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (09):