A single amino acid substitution enhances the catalytic activity of family 11 xylanase at alkaline pH

被引:16
作者
Shibuya, H [1 ]
Kaneko, S
Hayashi, K
机构
[1] Forestry & Forest Prod Res Inst, Tsukuba, Ibaraki 3058687, Japan
[2] Natl Food Res Inst, Tsukuba, Ibaraki 3058642, Japan
关键词
xylanase; family; 11; alkalophilic; pH-dependent activity; random mutagenesis;
D O I
10.1271/bbb.69.1492
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Random mutagenesis of the gene encoding family 11 xylanase was used to obtain alkalophilic mutants. The catalytic domain of the chimeric enzyme Stx15, which was constructed from Streptomyces lividans xylanase B and Thermobifida fusca xylanase A, was mutated using error-prone PCR and screened for halo formation on dye-linked xylan plates and activity toward soluble xylan. A positive mutant, M1011, was isolated, and it was found that mutation A49V was responsible for the alkalophilicity of the mutant. Mutation A49V increased the specific activity at pH 9.1 and the stability of mutant A49V was not significantly different from that of Stx15 at 60 degrees C. Both enzymes retained more than 90% of their relative activity from pH 4.7 to 9.1 after I h of incubation at 60 degrees C. Analysis of the kinetic parameters at various pH values showed that the A49V mutation reduced the K-m, in the alkaline pH range, resulting in the higher specific activity of the A49V mutant enzyme.
引用
收藏
页码:1492 / 1497
页数:6
相关论文
共 21 条
[1]   Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum:: the pH behaviour of Trichoderma reesei CeI7A and its E223S/A224H/L225V/T226A/D262G mutant [J].
Becker, D ;
Braet, C ;
Brumer, H ;
Claeyssens, M ;
Divne, C ;
Fagerström, BR ;
Harris, M ;
Jones, TA ;
Kleywegt, GJ ;
Koivula, A ;
Mahdi, S ;
Piens, K ;
Sinnott, ML ;
Ståhlberg, J ;
Teeri, TT ;
Underwood, M ;
Wohlfahrt, G .
BIOCHEMICAL JOURNAL, 2001, 356 (01) :19-30
[2]   Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase [J].
Chen, YL ;
Tang, TY ;
Cheng, KJ .
CANADIAN JOURNAL OF MICROBIOLOGY, 2001, 47 (12) :1088-1094
[3]   Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH [J].
Fushinobu, S ;
Ito, K ;
Konno, M ;
Wakagi, T ;
Matsuzawa, H .
PROTEIN ENGINEERING, 1998, 11 (12) :1121-1128
[4]  
Gessesse A, 1998, APPL ENVIRON MICROB, V64, P3533
[5]   SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling [J].
Guex, N ;
Peitsch, MC .
ELECTROPHORESIS, 1997, 18 (15) :2714-2723
[6]   NEW FAMILIES IN THE CLASSIFICATION OF GLYCOSYL HYDROLASES BASED ON AMINO-ACID-SEQUENCE SIMILARITIES [J].
HENRISSAT, B ;
BAIROCH, A .
BIOCHEMICAL JOURNAL, 1993, 293 :781-788
[7]  
Horikoshi K, 1996, FEMS MICROBIOL REV, V18, P259, DOI 10.1016/0168-6445(96)00017-4
[8]   Hydrogen bonding and catalysis: A novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase [J].
Joshi, MD ;
Sidhu, G ;
Pot, I ;
Brayer, GD ;
Withers, SG ;
McIntosh, LP .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 299 (01) :255-279
[9]   The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 angstrom resolution, and a comparison with related enzymes [J].
Kleywegt, GJ ;
Zou, JY ;
Divne, C ;
Davies, GJ ;
Sinning, I ;
Stahlberg, J ;
Reinikainen, T ;
Srisodsuk, M ;
Teeri, TT ;
Jones, TA .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (03) :383-397
[10]   Three-dimensional structure of endo-1,4-beta-xylanase I from Aspergillus niger: Molecular basis for its low pH optimum [J].
Krengel, U ;
Dijkstra, BW .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 263 (01) :70-78