Universal corner entanglement of Dirac fermions and gapless bosons from the continuum to the lattice

被引:34
作者
Helmes, Johannes [1 ,2 ]
Sierens, Lauren E. Hayward [2 ,3 ]
Chandran, Anushya [2 ]
Witczak-Krempa, William [4 ]
Melko, Roger G. [2 ,3 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
加拿大自然科学与工程研究理事会;
关键词
ENTROPY;
D O I
10.1103/PhysRevB.94.125142
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A quantum critical (QC) fluid exhibits universal subleading corrections to the area law of its entanglement entropies. In two dimensions, when the partition involves a corner of angle theta, the subleading term is logarithmic with coefficient a(alpha)(theta) for the alpha-Renyi entropy. In the smooth limit theta -> pi, a(1)(theta) yields the central charge of the stress tensor when the QC point is described by a conformal field theory (CFT). For general Renyi indices and angles, a(alpha)(theta) is richer and few general results exist. We study a(alpha)(theta) focusing on two benchmark CFTs, the free Dirac fermion and boson. We perform numerical lattice calculations to obtain high precision results in 0, alpha regimes hitherto unexplored. We derive field theory estimates for a(alpha)(theta), including exact results, and demonstrate an excellent quantitative match with our numerical calculations. We also develop and test strong lower bounds, which apply to both free and interacting QC systems. Finally, we comment on the near collapse of a(alpha)(theta) for various theories, including interacting O(N) models.
引用
收藏
页数:14
相关论文
共 56 条
[1]   Renyi entropy and conformal defect [J].
Bianchi, Lorenzo ;
Meineri, Marco ;
Myers, Robert C. ;
Smolkin, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07)
[2]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[3]   Bounds on corner entanglement in quantum critical states [J].
Bueno, Pablo ;
Witczak-Krempa, William .
PHYSICAL REVIEW B, 2016, 93 (04)
[4]   Universal corner entanglement from twist operators [J].
Bueno, Pablo ;
Myers, Robert C. ;
Witczak-Krempa, William .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09)
[5]   Corner contributions to holographic entanglement entropy [J].
Bueno, Pablo ;
Myers, Robert C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08) :1-54
[6]   Universality of Corner Entanglement in Conformal Field Theories [J].
Bueno, Pablo ;
Myers, Robert C. ;
Witczak-Krempa, William .
PHYSICAL REVIEW LETTERS, 2015, 115 (02)
[7]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[8]   IS THERE A C-THEOREM IN 4 DIMENSIONS [J].
CARDY, JL .
PHYSICS LETTERS B, 1988, 215 (04) :749-752
[9]   Universal terms for the entanglement entropy in 2+1 dimensions [J].
Casini, H. ;
Huerta, M. .
NUCLEAR PHYSICS B, 2007, 764 (03) :183-201
[10]   Positivity, entanglement entropy, and minimal surfaces [J].
Casini, H. ;
Huerta, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (11)