Signal Classification Using Deep Learning

被引:9
|
作者
Nishizaki, Hiromitsu [1 ]
Makino, Koji [1 ]
机构
[1] Univ Yamanashi, Grad Sch Interdisciplinary Res, 4-3-11 Takeda, Kofh, Japan
关键词
deep learning; neural network; signal processing; signal classification; NEURAL-NETWORKS;
D O I
10.1109/sensorsnano44414.2019.8940077
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Internet-of-Things (IoT) devices have rapidly become important in understanding conditions in an environment. The sensed data from an IoT (or sensor) device generally form a time sequential signal where the values vary with time. This study describes lime sequential signal processing using a recurrent-based neural network and particularly focuses on two sorts of signal classification tasks: a sound classification and a tennis swing motion classification. We will introduce these classification tasks and their evaluation results using recurrent neural networks. The experimental results show that the recurrent neural networks could well classify the signals. Moreover, the bi-directional analysis is critical to achieving high-performance classification.
引用
收藏
页码:81 / 84
页数:4
相关论文
共 50 条
  • [31] Race classification using deep learning
    Khan, Khalil
    Khan, Rehan Ullah
    Ali, Jehad
    Uddin, Irfan
    Khan, Sahib
    Roh, Byeong-Hee
    Computers, Materials and Continua, 2021, 68 (03): : 3483 - 3498
  • [32] Classification of Legislations using Deep Learning
    Pudaruth, Sameerchand
    Soyjaudah, Sunjiv
    Gunputh, Rajendra
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2021, 18 (05) : 651 - 662
  • [33] MALWARE CLASSIFICATION USING DEEP LEARNING
    Lo, Cheng-Hsiang
    Liu, Ta-Che
    Liu, I-Hsien
    Li, Jung-Shian
    Liu, Chuan-Gang
    Li, Chu-Fen
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 126 - 129
  • [34] Using Deep Learning for Trajectory Classification
    de Freitas, Nicksson C. A.
    Coelho da Silva, Ticiana L.
    Fernandes de Macedo, Jose Antonio
    Melo Junior, Leopoldo
    Cordeiro, Matheus Gomes
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2021, : 664 - 671
  • [35] Acoustic Classification using Deep Learning
    Aslam, Muhammad Ahsan
    Sarwar, Muhammad Umer
    Hanif, Muhammad Kashif
    Talib, Ramzan
    Khalid, Usama
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (08) : 153 - 159
  • [36] Melanoma Classification Using Deep Learning
    Mousa, Yehia
    Taha, Radwa
    Kaur, Ranpreet
    Afifi, Shereen
    IMAGE AND VIDEO TECHNOLOGY, PSIVT 2023, 2024, 14403 : 259 - 272
  • [37] Race Classification Using Deep Learning
    Khan, Khalil
    Khan, Rehan Ullah
    Ali, Jehad
    Uddin, Irfan
    Khan, Sahib
    Roh, Byeong-hee
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03): : 3483 - 3498
  • [38] Classification of Leucocytes Using Deep Learning
    Suganthi, N.
    Preethi, V
    Swetha, K.
    Kannan, K.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 116 - 120
  • [39] Classification of Sand Using Deep Learning
    Li, Linzhu
    Iskander, Magued
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2023, 149 (11)
  • [40] Using Deep Learning for Mammography Classification
    Hepsag, Pinar Uskaner
    Ozel, Selma Ayse
    Yazici, Adnan
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 418 - 423