Random discrete linear canonical transform

被引:32
|
作者
Wei, Deyun [1 ]
Wang, Ruikui [2 ]
Li, Yuan-Min [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Telecommun Engn, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
FRACTIONAL FOURIER-TRANSFORM; OPTICAL-IMAGE ENCRYPTION; BAND-LIMITED SIGNALS; UNCERTAINTY PRINCIPLE; DOMAIN; DISCRETIZATION; ALGORITHM; EIGENFUNCTIONS; CONVOLUTION; PRODUCT;
D O I
10.1364/JOSAA.33.002470
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Linear canonical transforms (LCTs) are a family of integral transforms with wide applications in optical, acoustical, electromagnetic, and other wave propagation problems. In this paper, we propose the random discrete linear canonical transform (RDLCT) by randomizing the kernel transform matrix of the discrete linear canonical transform (DLCT). The RDLCT inherits excellent mathematical properties from the DLCT along with some fantastic features of its own. It has a greater degree of randomness because of the randomization in terms of both eigenvectors and eigenvalues. Numerical simulations demonstrate that the RDLCT has an important feature that the magnitude and phase of its output are both random. As an important application of the RDLCT, it can be used for image encryption. The simulation results demonstrate that the proposed encryption method is a security-enhanced image encryption scheme. (C) 2016 Optical Society of America
引用
收藏
页码:2470 / 2476
页数:7
相关论文
共 50 条
  • [21] Continuous and discrete quaternion linear canonical wave packet transform?
    Rejini, M. Thanga
    Moorthy, R. Subash
    OPTIK, 2022, 270
  • [22] Uncertainty principles associated with the offset linear canonical transform
    Huo, Haiye
    Sun, Wenchang
    Xiao, Li
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (02) : 466 - 474
  • [23] Uncertainty principle and orthogonal condition for the short-time linear canonical transform
    Huang, Lei
    Zhang, Ke
    Chai, Yi
    Xu, Shuiqing
    SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (06) : 1177 - 1181
  • [24] The Extrapolation Theorem for Discrete Signals in the Offset Linear Canonical Transform Domain
    Xu, Shuiqing
    Feng, Li
    Chai, Yi
    Cheng, Tingli
    He, Yigang
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (01) : 609 - 620
  • [25] Modeling circulating cavity fields using the discrete linear canonical transform
    Ciobanu, A. A.
    Brown, D. D.
    Veitch, P. J.
    Ottaway, D. J.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (09) : 1293 - 1303
  • [26] A fast algorithm for the linear canonical transform
    Campos, Rafael G.
    Figueroa, Jared
    SIGNAL PROCESSING, 2011, 91 (06) : 1444 - 1447
  • [27] Uncertainty Principles for Linear Canonical Transform
    Zhao, Juan
    Tao, Ran
    Li, Yan-Lei
    Wang, Yue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (07) : 2856 - 2858
  • [28] Multidimensional linear canonical transform and convolution
    Kundu, Manab
    Prasad, Akhilesh
    Verma, Randhir Kumar
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2022, 37 (02) : 159 - 171
  • [29] Analysis of A-stationary random signals in the linear canonical transform domain
    Xu, Shuiqing
    Feng, Li
    Chai, Yi
    He, Yigang
    SIGNAL PROCESSING, 2018, 146 : 126 - 132
  • [30] Nonuniform sampling theorems for random signals in the linear canonical transform domain
    Xu Shuiqing
    Jiang Congmei
    Chai Yi
    Hu Youqiang
    Huang Lei
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2018, 105 (06) : 1051 - 1062