Iron and carbon codoped WO3 with hierarchical walnut-like microstructure for highly sensitive and selective acetone sensor

被引:79
|
作者
Shen, Jun-Yue [1 ]
Wang, Meng-Di [1 ]
Wang, Yan-Fang [1 ]
Hu, Jing-Ya [1 ]
Zhu, Yanyan [1 ]
Zhang, Yu Xin [2 ]
Li, Zhong-Jun [1 ]
Yao, Hong-Chang [1 ]
机构
[1] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450002, Henan, Peoples R China
[2] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
关键词
WO3; Codoped; Acetone; Sensitivity; Selectivity; Stability; GAS-SENSING PROPERTIES; C-DOPED WO3; TUNGSTEN-OXIDE; PHOTOCATALYTIC ACTIVITY; NANOSTRUCTURED WO3; BREATH ANALYSIS; METAL-OXIDES; THIN-FILMS; FE; PERFORMANCE;
D O I
10.1016/j.snb.2017.10.073
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Current metal-oxide-based sensing materials are confronted with several challenges, especially in sensitivity, selectivity and stability, for their application in the breath acetone analysis. Herein, hierarchical walnut-like Fe-C-codoped WO3 microspheres were synthesized and characterized by X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The amount of Fe doping was optimized based on detecting the acetone responses dependent on the operating temperature. The sensor based on the optimal Fe-C-codoped WO3 (FW3) exhibited high response to acetone and very low responses to NH3, CO, toluene, methanol, ethanol and NO. The results indicate that the optimized material possesses high sensitivity and good selectivity toward acetone vapor. Besides, the FW3 sensor presented superior anti-interferential ability to various mixed-gas systems. More importantly, the responses of the sensor exhibited no obvious fluctuation over 12 weeks, implying good long-term stability of the synthesized material. We suggest that the phase, morphology and the increased number of oxygen vacancies induced by Fe doping are the underlying reason for the improved gas sensing performance of the Fe-C-codoped WO3 microspheres. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 50 条
  • [1] Highly selective and sensitive WO3 nanoflakes based ammonia sensor
    Buyukkose, Serkan
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 110
  • [2] Highly sensitive and selective acetone sensor based on C-doped WO3 for potential diagnosis of diabetes mellitus
    Xiao, Teng
    Wang, Xiu-Yue
    Zhao, Zhi-Hua
    Li, Liu
    Zhang, Lin
    Yao, Hong-Chang
    Wang, Jian-She
    Li, Zhong-Jun
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 199 : 210 - 219
  • [3] The hierarchical nanostructured Co-doped WO3/carbon and their improved acetone sensing perfomance
    Saasa, Valentine
    Malwela, Thomas
    Lemmer, Yolandy
    Beukes, Mervyn
    Mwakikunga, Bonex
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 117
  • [4] Highly sensitive and selective NO2 sensor based on Au-impregnated WO3 nanorods
    Kabcum, S.
    Kotchasak, N.
    Channei, D.
    Tuantranont, A.
    Wisitsoraat, A.
    Phanichphant, S.
    Liewhiran, C.
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 252 : 523 - 536
  • [5] Preparation and characterization of nanocrystalline WO3 powder based highly sensitive acetone sensor
    Singh, M. P.
    Singh, H.
    Singh, O.
    Kohli, N.
    Singh, R. C.
    INDIAN JOURNAL OF PHYSICS, 2012, 86 (05) : 357 - 361
  • [6] Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite
    Kaur, Jasmeet
    Anand, Kanica
    Kaur, Amanpreet
    Singh, Ravi Chand
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 258 : 1022 - 1035
  • [7] A novel room-temperature formaldehyde gas sensor based on walnut-like WO3 modification on Ni-graphene composites
    Mehmood, Shahid
    Khan, Faheem Ullah
    Shah, Muhmmad Naeem
    Ma, Junxian
    Yang, Yatao
    Li, Guijun
    Xu, Wei
    Zhao, Xiaojin
    He, Wei
    Pan, Xiaofang
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [8] La and Fe co-doped walnut-like cubic-rhombohedral-In2O3 for highly sensitive and selective detection of acetone vapor
    Wu, Linjie
    Cao, Ensi
    Zhang, Yongjia
    Sun, Li
    Sun, Bing
    Yu, Zhichao
    MATERIALS LETTERS, 2023, 336
  • [9] Highly enhanced acetone sensing performance of porous C-doped WO3 hollow spheres by carbon spheres as templates
    Shen, Jun-Yue
    Zhang, Lin
    Ren, Juan
    Wang, Ji-Chao
    Yao, Hong-Chang
    Li, Zhong-Jun
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 239 : 597 - 607
  • [10] WO3 nanolamellae/reduced graphene oxide nanocomposites for highly sensitive and selective acetone sensing
    Kaur, Jasmeet
    Anand, Kanica
    Anand, Kanika
    Singh, Ravi Chand
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (18) : 12894 - 12907