A Krylov subspace method for quadratic matrix polynomials with application to constrained least squares problems

被引:26
作者
Li, RC [1 ]
Ye, Q [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
quadratic matrix polynomial; Krylov subspace; quadratic eigenvalue problem; least squares problem; quadratic constraint;
D O I
10.1137/S0895479802409390
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a Krylov subspace-type projection method for a quadratic matrix polynomial lambda(2)I - lambdaA - B that works directly with A and B without going through any linearization. We discuss a special case when one matrix is a low rank perturbation of the other matrix. We also apply the method to solve quadratically constrained linear least squares problem through a reformulation of Gander, Golub, and von Matt as a quadratic eigenvalue problem, and we demonstrate the effectiveness of this approach. Numerical examples are given to illustrate the efficiency of the algorithms.
引用
收藏
页码:405 / 428
页数:24
相关论文
共 33 条
[1]  
[Anonymous], 1997, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, DOI 10.1137/1.9780898719628
[3]  
BAI Z, 2000, COMMUNICATION
[4]  
Bai Z., 2000, TEMPLATES SOLUTION A, DOI DOI 10.1137/1.9780898719581
[5]   On the regularizing properties of the GMRES method [J].
Calvetti, D ;
Lewis, B ;
Reichel, L .
NUMERISCHE MATHEMATIK, 2002, 91 (04) :605-625
[6]   Iterative exponential filtering for large discrete ill-posed problems [J].
Calvetti, D ;
Reichel, L ;
Zhang, Q .
NUMERISCHE MATHEMATIK, 1999, 83 (04) :535-556
[7]   Estimation of the L-curve via Lanczos bidiagonalization [J].
Calvetti, D ;
Golub, GH ;
Reichel, L .
BIT NUMERICAL MATHEMATICS, 1999, 39 (04) :603-619
[8]  
Demmel J.W., 1997, APPL NUMERICAL LINEA
[9]   THE SPECTRAL TRANSFORMATION LANCZOS METHOD FOR THE NUMERICAL-SOLUTION OF LARGE SPARSE GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS [J].
ERICSSON, T ;
RUHE, A .
MATHEMATICS OF COMPUTATION, 1980, 35 (152) :1251-1268
[10]   ON STATIONARY VALUES OF A 2ND-DEGREE POLYNOMIAL ON UNIT SPHERE [J].
FORSYTHE, GE ;
GOLUB, GH .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1965, 13 (04) :1050-&