Facet-coating effects on the 1.3-μm strained multiple-quantum-well AlGaInAs/InP laser diodes

被引:6
|
作者
Lin, CC [1 ]
Liu, KS
Wu, MC
Ko, SC
Wang, WH
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan
[2] Natl Tsing Hua Univ, Elect Engn Res Inst, Hsinchu 300, Taiwan
[3] Chunghwa Telecom Co Ltd, Appl Res Lab, Telecommun Labs, Chungli 320, Taiwan
关键词
laser diode; strained multiple quantum wells; AlGaInAs/InP; facet coating; characteristic temperature;
D O I
10.1143/JJAP.37.6399
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we report the fabrication and characteristics of 1.3-mu m strained multiple-quantum-well ridge-waveguide Al-GaInAs/InP laser diodes and the influence of reflective films on threshold current, slope efficiency, characteristic temperature and lone-term reliability. A higher characteristic temperature and improved linearity of CW light-current characteristics can be obtained by increasing the facet reflectivity. With a high reflectivity coating of 70% on the front facet and 90% on the rear facet, the laser diodes exhibit a high characteristic temperature of 92 K, an output power of 15 mW at 120 degrees C, and only 0.7 dB slope efficiency drop at the output power of 30 mW and 20 degrees C. Long-term aging was applied to test the facet-coating reliability using the constant power mode of 10 mW at 85 degrees C. The laser diodes have exhibited stable operation up to 6000 h and no significant degradation has been observed.
引用
收藏
页码:6399 / 6402
页数:4
相关论文
共 50 条
  • [21] High-power and low-threshold-current operation of 1.3 μm strain-compensated AlGaInAs/AlGaInAs multiple-quantum-well laser diodes
    Lei, PH
    Wu, MY
    Lin, CC
    Ho, WJ
    Wu, MC
    SOLID-STATE ELECTRONICS, 2002, 46 (12) : 2041 - 2044
  • [22] Optimization of active region for 1.3-µm GalnAsP compressive-strain multiple-quantum-well ridge waveguide laser diodes
    Po-Hsun Lei
    Chyi-Dar Yang
    Ming-Yuan Wu
    Chih-Wei Hu
    Meng-Chyi Wu
    Yin-Hsun Huang
    Wen-Jeng Ho
    Journal of Electronic Materials, 2006, 35 : 243 - 249
  • [23] 1.3-μm uncooled 10 Gb/s directly modulated MQW AlGaInAs/InP laser diodes
    王定理
    周宁
    张军
    刘宇
    祝宁华
    李林松
    Chinese Optics Letters, 2005, (08) : 466 - 468
  • [24] Theoretical study of the temperature dependence of 1.3-mu m AlGaInAs-InP multiple-quantum-well lasers
    Pan, JW
    Chyi, JI
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (12) : 2133 - 2138
  • [25] Critical temperature of 1.3 μm InP-based strained-layer multiple-quantum-well lasers
    Seki, Shunji
    Yokoyama, Kiyoyuki
    Applied Physics Letters, 1997, 71 (18):
  • [26] Low-cost and high-performance 1.3-μm AlGaInAs-InP uncooled laser diodes
    Peng, Te-Chin
    Huang, Yun-Hsun
    Yang, Chih-Chao
    Huang, Kun-Fu
    Lee, Feng-Ming
    Hu, Chih-Wei
    Wu, Meng-Chyi
    Ho, Chong-Long
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (9-12) : 1380 - 1382
  • [27] 1.3-μm-Wavelength AlGaInAs Multiple-Quantum-Well Semi-Insulating Buried-Heterostructure Distributed-Reflector Laser Arrays on Semi-Insulating InP Substrate
    Matsuda, Manabu
    Uetake, Ayahito
    Simoyama, Takasi
    Okumura, Shigekazu
    Takabayashi, Kazumasa
    Ekawa, Mitsuru
    Yamamoto, Tsuyoshi
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (06) : 241 - 247
  • [28] Observation of reduced nonradiative current in 1.3-μm AlGaInAs-InP strained MQW lasers
    Higashi, T
    Sweeney, SJ
    Phillips, AF
    Adams, AR
    O'Reilly, EP
    Uchida, T
    Fujii, T
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (04) : 409 - 411
  • [29] 1.58-μm lattice-matched and strained digital alloy AlGaInAs-InP multiple-quantum-well lasers
    Liu, GT
    Stintz, A
    Pease, EA
    Newell, TC
    Malloy, KJ
    Lester, LF
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (01) : 4 - 6
  • [30] Experimental analysis of temperature dependence in 1.3-μm AlGaInAs-InP strained MQW lasers
    Higashi, Toshio
    Sweeney, Stephen J.
    Phillips, Alistair F.
    Adams, Alfred R.
    O'Reilly, Eoin P.
    Uchida, Toru
    Fujii, Takuya
    IEEE Journal on Selected Topics in Quantum Electronics, 5 (03): : 413 - 419