Interface Engineering of Perovskite Solar Cell Using a Reduced-Graphene Scaffold

被引:73
作者
Tavakoli, Mohammad Mandi [1 ]
Tavakoli, Rouhollah [1 ]
Hasanzadeh, Soheil [2 ]
Mirfasih, Mohammad Hassan [3 ]
机构
[1] Sharif Univ Technol, Dept Mat Sci & Engn, Tehran 14588, Iran
[2] Ecole Polytech Fed Lausanne, Inst Mat, CH-1015 Lausanne, Switzerland
[3] Univ Tokyo, Sch Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
关键词
QUANTUM DOTS; HIGHLY EFFICIENT; PHOTOVOLTAICS; NANOCRYSTALS; ENHANCEMENT; PASSIVATION; PERFORMANCE; ELECTRODES; DEPOSITION; LAYER;
D O I
10.1021/acs.jpcc.6b05667
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interface engineering of solar cell device is a prominent strategy to improve the device performance. Herein, we synthesize reduced-graphene scaffold (rGS) by using a new and simple chemical approach. In this regard, we synthesize 4 hollow structure of graphene and then fabricate a three-dimensional scaffold of graphene with a superior surface area using electrophoretic process. We employ this, scaffold as an interface layer between the electron transfer and absorber: layers in perovskite solar cell: The characterization tests and photovoltaic results show that rGS improves the carrier transportation, yielding a 27% improvement in device performance as compared to conventional device. Finally, a power conversion efficiency Of 17.2% is achieved :for the device based on the graphene scaffold. Besides, rGS amends the stability and hysteresis effect of the perovskite solar cell.
引用
收藏
页码:19531 / 19536
页数:6
相关论文
共 30 条
  • [1] Interface engineering of perovskite solar cells with PEO for improved performance
    Dong, H. P.
    Li, Y.
    Wang, S. F.
    Li, W. Z.
    Li, N.
    Guo, X. D.
    Wang, L. D.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (18) : 9999 - 10004
  • [2] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [3] Interface Recombination in Depleted Heterojunction Photovoltaics based on Colloidal Quantum Dots
    Kemp, Kyle W.
    Labelle, Andre J.
    Thon, Susanna M.
    Ip, Alexander H.
    Kramer, Illan J.
    Hoogland, Sjoerd
    Sargent, Edward H.
    [J]. ADVANCED ENERGY MATERIALS, 2013, 3 (07) : 917 - 922
  • [4] Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells
    Lee, Jin-Wook
    Kim, Hui-Seon
    Park, Nam-Gyu
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (02) : 311 - 319
  • [5] Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices
    Leung, Siu-Fung
    Zhang, Qianpeng
    Tavakoli, Mohammad Mahdi
    He, Jin
    Mo, Xiaoliang
    Fan, Zhiyong
    [J]. SMALL, 2016, 12 (19) : 2536 - 2548
  • [6] High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step
    Qiu, Weiming
    Buffiere, Marie
    Brammertz, Guy
    Paetzold, Ulrich W.
    Froyen, Ludo
    Heremans, Paul
    Cheyns, David
    [J]. ORGANIC ELECTRONICS, 2015, 26 : 30 - 35
  • [7] Charge separation and ultraviolet photovoltaic conversion of ZnO quantum dots conjugated with graphene nanoshells
    Son, Dong Ick
    Kwon, Byoung Wook
    Yang, Jeong Do
    Park, Dong Hee
    Seo, Won Seon
    Lee, Hyunbok
    Yi, Yeonjin
    Lee, Chang Lyoul
    Choi, Won Kook
    [J]. NANO RESEARCH, 2012, 5 (11) : 747 - 761
  • [8] Son DI, 2012, NAT NANOTECHNOL, V7, P465, DOI [10.1038/NNANO.2012.71, 10.1038/nnano.2012.71]
  • [9] Interface modification for highly efficient organic photovoltaics
    Steim, Roland
    Choulis, Stelios A.
    Schilinsky, Pavel
    Brabec, Christoph J.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (09)
  • [10] Effect of molybdenum on grain boundary segregation in Incoloy 901 superalloy
    Tavakkoli, M. M.
    Abbasi, S. M.
    [J]. MATERIALS & DESIGN, 2013, 46 : 573 - 578