Choreographies in the discrete nonlinear Schrodinger equations

被引:3
作者
Calleja, Renato [1 ]
Doedel, Eusebius [2 ]
Garcia-Azpeitia, Carlos [3 ]
Pando, Carlos L. L. [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Mexico City, DF, Mexico
[2] Concordia Univ, Dept Comp Sci, Montreal, PQ, Canada
[3] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City, DF, Mexico
[4] Benemerita Univ Autonoma Puebla, Inst Fis, Puebla, Mexico
基金
加拿大自然科学与工程研究理事会;
关键词
PERIODIC-SOLUTIONS; RELATIVE EQUILIBRIA; BIFURCATION; VORTEX; PLANAR; EXISTENCE; SOLITONS; ORBITS;
D O I
10.1140/epjst/e2018-00135-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study periodic solutions of the discrete nonlinear Schrodinger equation (DNLSE) that bifurcate from a symmetric polygonal relative equilibrium containing n sites. With specialized numerical continuation techniques and a varying physically relevant parameter we can locate interesting orbits, including infinitely many choreographies. Many of the orbits that correspond to choreographies are stable, as indicated by Floquet multipliers that are extracted as part of the numerical continuation scheme, and as verified a posteriori by simple numerical integration. We discuss the physical relevance and the implications of our results.
引用
收藏
页码:615 / 624
页数:10
相关论文
共 25 条
[1]   Periodic solutions of the N-vortex Hamiltonian system in planar domains [J].
Bartsch, Thomas ;
Dai, Qianhui .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (03) :2275-2295
[2]   Action minimizing orbits in the n-body problem with simple choreography constraint [J].
Barutello, V ;
Terracini, S .
NONLINEARITY, 2004, 17 (06) :2015-2039
[3]   Absolute and relative choreographies in the problem of point vortices moving on a plane [J].
Borisov, AV ;
Mamaev, IS ;
Kilin, AA .
REGULAR & CHAOTIC DYNAMICS, 2004, 9 (02) :101-111
[4]  
Calleja R., CELEST MECH DYN ASTR
[5]   Unchained polygons and the N-body problem [J].
Chenciner, A. ;
Fejoz, J. .
REGULAR & CHAOTIC DYNAMICS, 2009, 14 (01) :64-115
[6]   A remarkable periodic solution of the three-body problem in the case of equal masses [J].
Chenciner, A ;
Montgomery, R .
ANNALS OF MATHEMATICS, 2000, 152 (03) :881-901
[7]  
Chenciner A, 2002, GEOMETRY MECH DYNAMI
[8]   PERIODIC SOLUTIONS OF N-VORTEX TYPE HAMILTONIAN SYSTEMS NEAR THE DOMAIN BOUNDARY [J].
Dai, Qianhui ;
Gebhard, Bjorn ;
Bartsch, Thomas .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (02) :977-995
[9]   On the existence of collisionless equivariant minimizers for the classical n-body problem [J].
Ferrario, DL ;
Terracini, S .
INVENTIONES MATHEMATICAE, 2004, 155 (02) :305-362
[10]   Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the n-body problem [J].
Garcia-Azpeitia, C. ;
Ize, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (05) :2033-2075