Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers

被引:355
作者
Oh, Hyung-Suk [1 ]
Nong, Hong Nhan [1 ]
Reier, Tobias [1 ]
Gliech, Manuel [1 ]
Strasser, Peter [1 ]
机构
[1] Tech Univ Berlin, Div Chem Engn, Dept Chem, Electrochem Energy Catalysis & Mat Sci Lab, D-10623 Berlin, Germany
关键词
DOPED TIN OXIDES; CATALYST SUPPORTS; ELECTROCATALYTIC ACTIVITY; SURFACE CHARACTERIZATION; ANODIC EVOLUTION; CATHODE CATALYST; SHAPE CONTROL; CARBON-BLACK; HYDROGEN; CELL;
D O I
10.1039/c5sc00518c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reducing the noble-metal catalyst content of acid Polymer Electrolyte Membrane (PEM) water electrolyzers without compromising catalytic activity and stability is a goal of fundamental scientific interest and substantial technical importance for cost-effective hydrogen-based energy storage. This study presents nanostructured iridium nanodendrites (Ir-ND) supported on antimony doped tin oxide (ATO) as efficient and stable water splitting catalysts for PEM electrolyzers. The active Ir-ND structures exhibited superior structural and morphological properties, such as particle size and surface area compared to commercial state-of-art Ir catalysts. Supported on tailored corrosion-stable conductive oxides, the Ir-ND catalysts exhibited a more than 2-fold larger kinetic water splitting activity compared with supported Ir nanoparticles, and a more than 8-fold larger catalytic activity than commercial Ir blacks. In single-cell PEM electrolyzer tests, the Ir-ND/ATO outperformed commercial Ir catalysts more than 2-fold at technological current densities of 1.5 A cm(-2) at a mere 1.80 V cell voltage, while showing excellent durability under constant current conditions. We conclude that Ir-ND/ATO catalysts have the potential to substantially reduce the required noble metal loading, while maintaining their catalytic performance, both in idealized three-electrode set ups and in the real electrolyzer device environments.
引用
收藏
页码:3321 / 3328
页数:8
相关论文
共 79 条
  • [1] Ceramic materials as supports for low-temperature fuel cell catalysts
    Antolini, E.
    Gonzalez, E. R.
    [J]. SOLID STATE IONICS, 2009, 180 (9-10) : 746 - 763
  • [2] Iridium As Catalyst and Cocatalyst for Oxygen Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers and Fuel Cells
    Antolini, Ermete
    [J]. ACS CATALYSIS, 2014, 4 (05): : 1426 - 1440
  • [3] INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES
    ARDIZZONE, S
    FREGONARA, G
    TRASATTI, S
    [J]. ELECTROCHIMICA ACTA, 1990, 35 (01) : 263 - 267
  • [4] The hydrogen economy in the 21st century: a sustainable development scenario
    Barreto, L
    Makihira, A
    Riahi, K
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (03) : 267 - 284
  • [6] Scientific aspects of polymer electrolyte fuel cell durability and degradation
    Borup, Rod
    Meyers, Jeremy
    Pivovar, Bryan
    Kim, Yu Seung
    Mukundan, Rangachary
    Garland, Nancy
    Myers, Deborah
    Wilson, Mahlon
    Garzon, Fernando
    Wood, David
    Zelenay, Piotr
    More, Karren
    Stroh, Ken
    Zawodzinski, Tom
    Boncella, James
    McGrath, James E.
    Inaba, Minoru
    Miyatake, Kenji
    Hori, Michio
    Ota, Kenichiro
    Ogumi, Zempachi
    Miyata, Seizo
    Nishikata, Atsushi
    Siroma, Zyun
    Uchimoto, Yoshiharu
    Yasuda, Kazuaki
    Kimijima, Ken-ichi
    Iwashita, Norio
    [J]. CHEMICAL REVIEWS, 2007, 107 (10) : 3904 - 3951
  • [7] ELECTRICALLY CONDUCTIVE GRADES OF CARBON-BLACK - STRUCTURE AND PROPERTIES
    BOURRAT, X
    [J]. CARBON, 1993, 31 (02) : 287 - 302
  • [8] On a theory of the van der Waals adsorption of gases
    Brunauer, S
    Deming, LS
    Deming, WE
    Teller, E
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1940, 62 : 1723 - 1732
  • [9] Mesoporosity as a new parameter for understanding tension stress generation in trees
    Chang, Shan-Shan
    Clair, Bruno
    Ruelle, Julien
    Beauchene, Jacques
    Di Renzo, Francesco
    Quignard, Francoise
    Zhao, Guang-Jie
    Yamamoto, Hiroyuki
    Gril, Joseph
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2009, 60 (11) : 3023 - 3030
  • [10] Electrochemical behavior of novel Ti/IrOx-Sb2O5-SnO2 anodes
    Chen, GH
    Chen, XM
    Yue, PL
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (17) : 4364 - 4369