The Chebyshev selections and fixed points of set-valued mappings in Banach spaces with some uniform convexity

被引:5
作者
Xiao, Jian-Zhong [1 ]
Zhu, Xing-Hua [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Set-valued mapping; Chebyshev center; Uniformly convex; Locally uniformly convex; Chebyshev fixed point; CENTERS;
D O I
10.1016/j.mcm.2011.04.029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The existence of a continuous Chebyshev selection for a Hausdorff continuous set-valued mapping is studied in a Banach space with some uniform convexity. As applications, some existence results of Chebyshev fixed point for condensing set-valued mappings are given, and the existence of Chebyshev solutions for an integral inclusion is proved. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1576 / 1583
页数:8
相关论文
共 19 条
  • [1] Perturbation of sets and centers
    Alvoni, E
    Papini, PL
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2005, 33 (03) : 423 - 434
  • [2] AMIR D, 1978, PAC J MATH, V77, P1
  • [3] Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
  • [4] Aubin J.P., 1984, DIFFERENTIAL INCLUSI
  • [5] CHIDUME C, 2009, LECT NOTES MATH GEOM
  • [6] Geometric properties of Banach spaces and the existence of nearest and farthest points
    Cobzas, Stefan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2005, (03) : 259 - 285
  • [7] Dominguez Benavides T., 2002, EXTR MATH, V17, P331
  • [8] GOEBEL K, 1990, TOPICS METRIC FIXED
  • [9] Guo D., 2002, NONLINEAR FUNCTIONAL
  • [10] Istratescu V. I., 1981, FIXED POINT THEORY I