Temperature-reflection symmetry

被引:11
作者
Basar, Goekce [1 ]
Cherman, Aleksey [2 ]
McGady, David A. [3 ]
Yamazaki, Masahito [4 ,5 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] Univ Minnesota, Dept Phys, Fine Theoret Phys Inst, Minneapolis, MN 55455 USA
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[4] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[5] Univ Tokyo, Kavli IPMU WPI, Kashiwa, Chiba 2778586, Japan
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 10期
关键词
N=1; IDENTITIES; TRANSITION; INDEX; MODEL;
D O I
10.1103/PhysRevD.91.106004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We point out the presence of a T -> -T temperature-reflection (T-reflection) symmetry for the partition functions of many physical systems. Without knowledge of the origin of the symmetry, we have only been able to test the existence of T-reflection symmetry in systems with exactly calculable partition functions. We show that T-reflection symmetry is present in a variety of conformal and nonconformal field theories and statistical mechanics models with known partition functions. For example, all minimal model partition functions in two-dimensional conformal field theories are invariant under T-reflections. An interesting property of the T-reflection symmetry is that it can be broken by shifts of the vacuum energy.
引用
收藏
页数:6
相关论文
共 28 条
[1]  
Aharony O, 2004, ADV THEOR MATH PHYS, V8, P603
[2]  
Basar G., ARXIV14083120
[3]  
Beccaria M., 2014, J PHYS A, V47
[4]   Higher spins in AdS5 at one loop: vacuum energy, boundary conformal anomalies and AdS/CFT [J].
Beccaria, Matteo ;
Tseytlin, Arkady A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (11)
[5]   Partition function of free conformal higher spin theory [J].
Beccaria, Matteo ;
Bekaert, Xavier ;
Tseytlin, Arkady A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08)
[6]   4d index to 3d index and 2d topological quantum field theory [J].
Benini, Francesco ;
Nishioka, Tatsuma ;
Yamazaki, Masahito .
PHYSICAL REVIEW D, 2012, 86 (06)
[7]   Polynomial identities, indices, and duality for the N=1 superconformal model SM(2,4v) [J].
Berkovich, A ;
McCoy, BM ;
Orrick, WP .
JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (5-6) :795-837
[8]   OPERATOR CONTENT OF TWO-DIMENSIONAL CONFORMALLY INVARIANT THEORIES [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1986, 270 (02) :186-204
[9]  
Di Francesco P., 1997, Graduate Texts in Contemporary Physics, DOI 10.1007/978-1-4612-2256-9
[10]   3-Manifolds and 3d indices [J].
Dimofte, Tudor ;
Gaiotto, Davide ;
Gukov, Sergei .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 17 (05) :975-1076