Stable A1-homotopy and R-equivalence

被引:6
|
作者
Asok, Aravind [2 ]
Haesemeyer, Christian [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jpaa.2011.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the existence of a k-rational point can be detected by the stable A(1-)homotopy category of S-1-spectra, or even a "rationalized" variant of this category. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2469 / 2472
页数:4
相关论文
共 50 条
  • [21] Etale realization on the A1-homotopy theory of schemes
    Isaksen, DC
    ADVANCES IN MATHEMATICS, 2004, 184 (01) : 37 - 63
  • [22] Localization and nilpotent spaces in A1-homotopy theory
    Asok, Aravind
    Fasel, Jean
    Hopkins, Michael J.
    COMPOSITIO MATHEMATICA, 2022, 158 (03) : 654 - 720
  • [23] R-EQUIVALENCE ON CONIC BUNDLES OF DEGREE-4
    COLLIOTTHELENE, JL
    SKOROBOGATOV, AN
    DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) : 671 - 677
  • [24] R-equivalence on families of rational varieties and the descent method
    Pirutka, Alena
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2012, 24 (02): : 461 - 473
  • [25] Adjoint groups over Qp(X) and R-equivalence
    Preeti, R.
    Soman, A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (09) : 4254 - 4264
  • [26] A1-homotopy Theory and Contractible Varieties: A Survey
    Asok, Aravind
    Ostvaer, Paul Arne
    HOMOTOPY THEORY AND ARITHMETIC GEOMETRY - MOTIVIC AND DIOPHANTINE ASPECTS, 2021, 2292 : 145 - 212
  • [27] A1-Homotopy Sheaves and A1-Homology Sheaves
    Morel, Fabien
    A1-ALGEBRAIC TOPOLOGY OVER A FIELD, 2012, 2052 : 149 - 175
  • [28] Semistable symmetric spectra in A1-homotopy theory
    Haehne, Stephan
    Hornbostel, Jens
    NEW YORK JOURNAL OF MATHEMATICS, 2015, 21 : 1 - 56
  • [29] Rationally trivial torsors in A1-homotopy theory
    Wendt, Matthias
    JOURNAL OF K-THEORY, 2011, 7 (03) : 541 - 572
  • [30] Generically split octonion algebras and A1-homotopy theory
    Asok, Aravind
    Hoyois, Marc
    Wendt, Matthias
    ALGEBRA & NUMBER THEORY, 2019, 13 (03) : 695 - 747