Analyzing Time-Course Microarray Data Using Functional Data Analysis - A Review

被引:22
|
作者
Coffey, Norma
Hinde, John
机构
[1] National University of Ireland, Galway
基金
爱尔兰科学基金会;
关键词
functional data analysis; time-course microarray data; gene expression; GENE-EXPRESSION; MODEL; CLASSIFICATION;
D O I
10.2202/1544-6115.1671
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gene expression over time can be viewed as a continuous process and therefore represented as a continuous curve or function. Functional data analysis (FDA) is a statistical methodology used to analyze functional data that has become increasingly popular in the analysis of time-course gene expression data. Several FDA techniques have been applied to gene expression profiles including functional regression analysis (to describe the relationship between expression profiles and other covariate(s)), functional discriminant analysis (to discriminate and classify groups of genes) and functional principal components analysis (for dimension reduction and clustering). This paper reviews the use of FDA and its associated methods to analyze time-course microarray gene expression data.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Predicting microRNA targets in time-series microarray experiments via functional data analysis
    Parker, Brian J.
    Wen, Jiayu
    BMC BIOINFORMATICS, 2009, 10
  • [22] The analysis of microarray data
    Hariharan, R
    PHARMACOGENOMICS, 2003, 4 (04) : 477 - 497
  • [23] Identifying significant temporal variation in time course microarray data without replicates
    Billups, Stephen C.
    Neville, Margaret C.
    Rudolph, Michael
    Porter, Weston
    Schedin, Pepper
    BMC BIOINFORMATICS, 2009, 10
  • [24] A permutation-based multiple testing method for time-course microarray experiments
    Sohn, Insuk
    Owzar, Kouros
    George, Stephen L.
    Kim, Sujong
    Jung, Sin-Ho
    BMC BIOINFORMATICS, 2009, 10
  • [25] Identifying Differentially Expressed Genes in Time Course Microarray Data
    Ma, Ping
    Zhong, Wenxuan
    Liu, Jun S.
    STATISTICS IN BIOSCIENCES, 2009, 1 (02) : 144 - 159
  • [26] PMD: A Resource for Archiving and Analyzing Protein Microarray data
    Xu, Zhaowei
    Huang, Likun
    Zhang, Hainan
    Li, Yang
    Guo, Shujuan
    Wang, Nan
    Wang, Shi-hua
    Chen, Ziqing
    Wang, Jingfang
    Tao, Sheng-ce
    SCIENTIFIC REPORTS, 2016, 6
  • [27] Statistical methods for analyzing microarray feature data with replications
    Yang, YN
    Hoh, J
    Broger, C
    Neeb, M
    Edington, J
    Lindpaintner, K
    Ott, J
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (02) : 157 - 169
  • [28] Identifying Differentially Expressed Genes in Time Course Microarray Data
    Ping Ma
    Wenxuan Zhong
    Jun S. Liu
    Statistics in Biosciences, 2009, 1 (2) : 144 - 159
  • [29] DTW-MIC Coexpression Networks from Time-Course Data
    Riccadonna, Samantha
    Jurman, Giuseppe
    Visintainer, Roberto
    Filosi, Michele
    Furlanello, Cesare
    PLOS ONE, 2016, 11 (03):
  • [30] Information visualization for DNA microarray data analysis: A critical review
    Zhang, Leishi
    Kujis, Jasna
    Liu, Xiaohui
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2008, 38 (01): : 42 - 54