Analyzing Time-Course Microarray Data Using Functional Data Analysis - A Review

被引:22
|
作者
Coffey, Norma
Hinde, John
机构
[1] National University of Ireland, Galway
基金
爱尔兰科学基金会;
关键词
functional data analysis; time-course microarray data; gene expression; GENE-EXPRESSION; MODEL; CLASSIFICATION;
D O I
10.2202/1544-6115.1671
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gene expression over time can be viewed as a continuous process and therefore represented as a continuous curve or function. Functional data analysis (FDA) is a statistical methodology used to analyze functional data that has become increasingly popular in the analysis of time-course gene expression data. Several FDA techniques have been applied to gene expression profiles including functional regression analysis (to describe the relationship between expression profiles and other covariate(s)), functional discriminant analysis (to discriminate and classify groups of genes) and functional principal components analysis (for dimension reduction and clustering). This paper reviews the use of FDA and its associated methods to analyze time-course microarray gene expression data.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Identifying Differentially Expressed Genes for Time-course Microarray Data through Functional Data Analysis
    Chen K.
    Wang J.-L.
    Statistics in Biosciences, 2010, 2 (2) : 95 - 119
  • [2] Nonparametric Bayesian functional clustering for time-course microarray data
    Wei, Ziwen
    Kuo, Lynn
    STATISTICS AND ITS INTERFACE, 2014, 7 (04) : 543 - 557
  • [3] Clustering of time-course gene expression data using functional data analysis
    Song, Joon Jin
    Lee, Ho-Jin
    Morris, Jeffrey S.
    Kang, Sanghoon
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2007, 31 (04) : 265 - 274
  • [4] Clustering time-course microarray data using functional Bayesian infinite mixture model
    Angelini, Claudia
    De Canditiis, Daniela
    Pensky, Marianna
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (01) : 129 - 149
  • [5] Clustering of Time-Course Microarray Data Using Pharmacokinetic Parameter
    Lee, Hyo-Jung
    Kim, Peol-A
    Park, Mira
    KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (04) : 623 - 631
  • [6] Analysis of time-course microarray data: Comparison of common tools
    Moradzadeh, Kobra
    Moein, Shiva
    Nickaeen, Niloofar
    Gheisari, Yousof
    GENOMICS, 2019, 111 (04) : 636 - 641
  • [7] Optimal classification for time-course gene expression data using functional data analysis
    Song, Joon Jin
    Deng, Weiguo
    Lee, Ho-Jin
    Kwon, Deukwoo
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2008, 32 (06) : 426 - 432
  • [8] Coordinated parallel views for the exploratory analysis of microarray time-course data
    Craig, P
    Kennedy, J
    Cumming, A
    THIRD INTERNATIONAL CONFERENCE ON COORDINATED & MULTIPLE VIEWS IN EXPLORATORY VISUALIZATION, PROCEEDINGS, 2005, : 3 - 14
  • [9] A Study of HME Model in Time-Course Microarray Data
    Myoung, Sungmin
    Kim, Donggeon
    Jo, Jinnam
    KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (03) : 415 - 422
  • [10] A Review of Cluster Analysis for Time Course Microarray Data
    Sohn, In Suk
    Lee, Jae Won
    Kim, Seo Young
    KOREAN JOURNAL OF APPLIED STATISTICS, 2006, 19 (01) : 13 - 32