Geometrically distinct solutions for Klein-Gordon-Maxwell systems with super-linear nonlinearities

被引:17
作者
Chen, Sitong [1 ]
Tang, Xianhua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Maxwell system; Geometrically distinct solutions; Variational methods; GROUND-STATE SOLUTIONS; EQUATION;
D O I
10.1016/j.aml.2018.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following Klein-Gordon-Maxwell system {-Delta u+V(x)u - (2 omega + phi)phi u = f(x,u), x is an element of R-3, Delta phi = (omega + phi)u(2), x is an element of R-3, where omega > 0 is a constant, V and f are periodic with respect to x. By combining deformation type arguments, Lusternik-Schnirelmann theory and some new tricks, we prove that the above system admits infinitely many geometrically distinct solutions under weaker superlinear conditions instead of the common super-cubic conditions on f. Our result seems new and extends the previous results in the literature. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:188 / 193
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[2]   Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system [J].
Azzollini, A. ;
Pisani, L. ;
Pomponio, A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :449-463
[3]  
Azzollini A, 2010, TOPOL METHOD NONL AN, V35, P33
[4]   The nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) :6065-6072
[5]   Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials [J].
Carriao, Paulo C. ;
Cunha, Patricia L. ;
Miyagaki, Olimpio H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (10) :4068-4078
[6]   Ground state solutions for generalized quasilinear Schrodinger equations with variable potentials and Berestycki-Lions nonlinearities [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
[7]   Infinitely many solutions and least energy solutions for Klein-Gordon-Maxwell systems with general superlinear nonlinearity [J].
Chen, Sitong ;
Tang, Xianhua .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (09) :3358-3366
[8]   IMPROVED RESULTS FOR KLEIN-GORDON-MAXWELL SYSTEMS WITH GENERAL NONLINEARITY [J].
Chen, Sitong ;
Tang, Xianhua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (05) :2333-2348
[9]  
Cunha PL, 2014, DIFFER INTEGRAL EQU, V27, P387
[10]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906