Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy

被引:153
作者
Nene, S. S. [1 ]
Liu, K. [1 ]
Frank, M. [1 ]
Mishra, R. S. [1 ]
Brennan, R. E. [2 ]
Cho, K. C. [2 ]
Li, Z. [3 ]
Raabe, D. [3 ]
机构
[1] Univ North Texas, Dept Mat Sci & Engn, Ctr Frict Stir Proc, Denton, TX 76203 USA
[2] US Army Res Lab, Weapons & Mat Res Directorate, Aberdeen Proving Ground, MD 21005 USA
[3] Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
HIGH-PRESSURE; GRAIN-SIZE; TRANSFORMATION; STEELS; MARTENSITE; DESIGN; MODEL; TRIP;
D O I
10.1038/s41598-017-16509-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The potential of high-entropy alloys (HEAs) to exhibit an extraordinary combination of properties by shifting the compositional regime from the corners towards the centers of phase diagrams has led to worldwide attention by material scientists. Here we present a strong and ductile non-equiatomic HEA obtained after friction stir processing (FSP). A transformation-induced plasticity (TRIP) assisted HEA with composition Fe50Mn30Co10Cr10 (at.%) was severely deformed by FSP and evaluated for its microstructure-mechanical property relationship. The FSP-engineered microstructure of the TRIP HEA exhibited a substantially smaller grain size, and optimized fractions of face-centered cubic (f.c.c.,gamma) and hexagonal close-packed (h.c.p., epsilon) phases, as compared to the as-homogenized reference material. This results in synergistic strengthening via TRIP, grain boundary strengthening, and effective strain partitioning between the. and e phases during deformation, thus leading to enhanced strength and ductility of the TRIP-assisted dual-phase HEA engineered via FSP.
引用
收藏
页数:7
相关论文
共 25 条
[1]   Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J].
Calcagnotto, Marion ;
Ponge, Dirk ;
Demir, Eralp ;
Raabe, Dierk .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (10-11) :2738-2746
[2]  
Cantor B., 2014, MUTICOMPONENT HIGH E, V16, P4249
[3]   Design of a twinning-induced plasticity high entropy alloy [J].
Deng, Y. ;
Tasan, C. C. ;
Pradeep, K. G. ;
Springer, H. ;
Kostka, A. ;
Raabe, D. .
ACTA MATERIALIA, 2015, 94 :124-133
[4]   Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects [J].
Galindo-Nava, E. I. ;
Rivera-Diaz-del-Castillo, P. E. J. .
ACTA MATERIALIA, 2017, 128 :120-134
[5]   High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development -: properties -: application [J].
Grässel, O ;
Krüger, L ;
Frommeyer, G ;
Meyer, LW .
INTERNATIONAL JOURNAL OF PLASTICITY, 2000, 16 (10-11) :1391-1409
[6]   Martensite start temperature and the austenite grain-size [J].
Guimaraes, J. R. C. ;
Rios, P. R. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (04) :1074-1077
[7]   Equal-Channel Angular Extrusion of a Low-Density High-Entropy Alloy Produced by High-Energy Cryogenic Mechanical Alloying [J].
Hammond, Vincent H. ;
Atwater, Mark A. ;
Darling, Kristopher A. ;
Nguyen, Hoang Q. ;
Kecskes, Laszlo J. .
JOM, 2014, 66 (10) :2021-2029
[8]   Defect structure and hardness in nanocrystalline CoCrFeMnNi High-Entropy Alloy processed by High-Pressure Torsion [J].
Heczel, Anita ;
Kawasaki, Megumi ;
Labar, Janos L. ;
Jang, Jae-il ;
Langdon, Terence G. ;
Gubicza, Jeno .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 711 :143-154
[9]   Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J].
Kim, Sang-Heon ;
Kim, Hansoo ;
Kim, Nack J. .
NATURE, 2015, 518 (7537) :77-+
[10]   Friction Stir Processing of a High Entropy Alloy Al0.1CoCrFeNi [J].
Kumar, N. ;
Komarasamy, M. ;
Nelaturu, P. ;
Tang, Z. ;
Liaw, P. K. ;
Mishra, R. S. .
JOM, 2015, 67 (05) :1007-1013