Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: a pilot study

被引:65
作者
Dassau, Eyal [1 ,2 ]
Renard, Eric [3 ,4 ,5 ]
Place, Jerome [5 ]
Farret, Anne [3 ,4 ,5 ]
Pelletier, Marie-Jose [3 ,4 ]
Lee, Justin [2 ]
Huyett, Lauren M. [2 ]
Chakrabarty, Ankush [1 ]
Doyle, Francis J., III [1 ,2 ]
Zisser, Howard C. [2 ]
机构
[1] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[3] Univ Hosp Montpellier, Dept Endocrinol Diabet Nutr, Montpellier, France
[4] Univ Hosp Montpellier, INSERM, Clin Invest Ctr 1411, Montpellier, France
[5] Univ Montpellier, CNRS UMR5203, Inst Funct Genom, INSERM U1191,Dept Psychol, Montpellier, France
基金
美国国家卫生研究院;
关键词
artificial pancreas; CGM; closed-loop; CSII; DiaPort; hyperglycaemia; hypoglycaemia intraperitoneal; insulin pump; model predictive control; type; 1; diabetes; SEVERE HYPOGLYCEMIA; PUMP THERAPY; INFUSION; MELLITUS; GLUCOSE; SYSTEM; REDUCTION; CROSSOVER; OPTION;
D O I
10.1111/dom.12999
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims: To compare intraperitoneal (IP) to subcutaneous (SC) insulin delivery in an artificial pancreas (AP). Research design and methods: Ten adults with type 1 diabetes participated in a non-randomized, non-blinded sequential AP study using the same SC glucose sensing and Zone Model Predictive Control (ZMPC) algorithm adjusted for insulin clearance. On first admission, subjects underwent closed-loop control with SC delivery of a fast-acting insulin analogue for 24 hours. Following implantation of a DiaPort IP insulin delivery system, the identical 24-hour trial was performed with IP regular insulin delivery. The clinical protocol included 3 unannounced meals with 70, 40 and 70 g carbohydrate, respectively. Primary endpoint was time spent with blood glucose (BG) in the range of 80 to 140 mg/dL (4.4-7.7 mmol/L). Results: Percent of time spent within the 80 to 140 mg/dL range was significantly higher for IP delivery than for SC delivery: 39.8 7.6 vs 25.6 +/- 13.1 (P = .03). Mean BG (mg/dL) and percent of time spent within the broader 70 to 180 mg/dL range were also significantly better for IP insulin: 151.0 +/- 11.0 vs 190.0 +/- 31.0 (P = .004) and 65.7 +/- 9.2 vs 43.9 +/- 14.7 (P = .001), respectively. Superiority of glucose control with IP insulin came from the reduced time spent in hyperglycaemia (>180 mg/dL: 32.4 +/- 8.9 vs 53.5 +/- 17.4, P = .014; >250 mg/dL: 5.9 +/- 5.6 vs 23.0 +/- 11.3, P = .0004). Higher daily doses of insulin (IU) were delivered with the IP route (43.7 +/- 0.1 vs 32.3 +/- 0.1, P < .001) with no increased percent time spent <70 mg/dL (IP: 2.5 +/- 2.9 vs SC: 4.1 +/- 5.3, P = .42). Conclusions: Glycaemic regulation with fully-automated AP delivering IP insulin was superior to that with SC insulin delivery. This pilot study provides proof-of-concept for an AP system combining a ZMPC algorithm with IP insulin delivery.
引用
收藏
页码:1698 / 1705
页数:8
相关论文
共 32 条
[1]   Effects of intraperitoneal insulin versus subcutaneous insulin administration on sex hormone-binding globulin concentrations in patients with type 1 diabetes mellitus [J].
Boering, M. ;
van Dijk, P. R. ;
Logtenberg, S. J. J. ;
Groenier, K. H. ;
Wolffenbuttel, B. H. R. ;
Gans, R. O. B. ;
Kleefstra, N. ;
Bilo, H. J. G. .
ENDOCRINE CONNECTIONS, 2016, 5 (03) :136-142
[2]   Glucose Sensing in the Peritoneal Space Offers Faster Kinetics Than Sensing in the Subcutaneous Space [J].
Burnett, Daniel R. ;
Huyett, Lauren M. ;
Zisser, Howard C. ;
Doyle, Francis J., III ;
Mensh, Brett D. .
DIABETES, 2014, 63 (07) :2498-2505
[3]   Multicenter outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using modular model predictive control in adults with type 1 diabetes [J].
Del Favero, S. ;
Place, J. ;
Kropff, J. ;
Messori, M. ;
Keith-Hynes, P. ;
Visentin, R. ;
Monaro, M. ;
Galasso, S. ;
Boscari, F. ;
Toffanin, C. ;
Di Palma, F. ;
Lanzola, G. ;
Scarpellini, S. ;
Farret, A. ;
Kovatchev, B. ;
Avogaro, A. ;
Bruttomesso, D. ;
Magni, L. ;
DeVries, J. H. ;
Cobelli, C. ;
Renard, E. .
DIABETES OBESITY & METABOLISM, 2015, 17 (05) :468-476
[4]   Closed- Loop Artificial Pancreas Systems: Engineering the Algorithms [J].
Doyle, Francis J., III ;
Huyett, Lauren M. ;
Lee, Joon Bok ;
Zisser, Howard C. ;
Dassau, Eyal .
DIABETES CARE, 2014, 37 (05) :1191-1197
[5]  
Finan Daniel A, 2015, J Diabetes Sci Technol, V10, P104, DOI 10.1177/1932296815593292
[6]  
Garcia-Verdugo Rosa, 2017, J Diabetes Sci Technol, V11, P814, DOI 10.1177/1932296817694913
[7]  
Grosman Benyamin, 2010, J Diabetes Sci Technol, V4, P961
[8]   Comparison of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy for glycaemic control in patients with type 1 diabetes: an open-label randomised controlled crossover trial [J].
Haidar, Ahmad ;
Legault, Laurent ;
Messier, Virginie ;
Mitre, Tina Maria ;
Leroux, Catherine ;
Rabasa-Lhoret, Remi .
LANCET DIABETES & ENDOCRINOLOGY, 2015, 3 (01) :17-26
[9]   Clinical Evaluation of an Automated Artificial Pancreas Using Zone-Model Predictive Control and Health Monitoring System [J].
Harvey, Rebecca A. ;
Dassau, Eyal ;
Bevier, Wendy C. ;
Seborg, Dale E. ;
Jovanovic, Lois ;
Doyle, Francis J., III ;
Zisser, Howard C. .
DIABETES TECHNOLOGY & THERAPEUTICS, 2014, 16 (06) :348-357
[10]  
Harvey Rebecca A, 2012, J Diabetes Sci Technol, V6, P1345