On Rationality of Generating Function for the Number of Spanning Trees in Circulant Graphs

被引:3
作者
Mednykh, A. D. [1 ]
Mednykh, I. A.
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
spanning tree; circulant graph; Chebyshev polynomial; generating function; JACOBIAN GROUP; COMPLEXITY; FORMULAS;
D O I
10.1142/S1005386720000085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F(x) = Sigma(infinity)(n=1) tau(s1,) (s2, ..)(.,)( sk) (n)x(n) be the generating function for the number tau(s1,) (s2, ..)(.,)( sk) (n) of spanning trees in the circulant graph C-n (s(1), s(2), ..., s(k)). We show that F(x) is a rational function with integer coefficients satisfying the property F(x) = F(1/x). A similar result is also true for the circulant graphs C-2n (s(1), s(2), ..., s(k), n) of odd valency. We illustrate the obtained results by a series of examples.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条