On Rationality of Generating Function for the Number of Spanning Trees in Circulant Graphs

被引:3
|
作者
Mednykh, A. D. [1 ]
Mednykh, I. A.
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
spanning tree; circulant graph; Chebyshev polynomial; generating function; JACOBIAN GROUP; COMPLEXITY; FORMULAS;
D O I
10.1142/S1005386720000085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F(x) = Sigma(infinity)(n=1) tau(s1,) (s2, ..)(.,)( sk) (n)x(n) be the generating function for the number tau(s1,) (s2, ..)(.,)( sk) (n) of spanning trees in the circulant graph C-n (s(1), s(2), ..., s(k)). We show that F(x) is a rational function with integer coefficients satisfying the property F(x) = F(1/x). A similar result is also true for the circulant graphs C-2n (s(1), s(2), ..., s(k), n) of odd valency. We illustrate the obtained results by a series of examples.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [11] On the Number of Spanning Trees of Graphs
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [12] The number of rooted forests in circulant graphs
    Grunwald, Lilya A.
    Mednykh, Ilya
    ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (04)
  • [14] Counting the number of spanning trees of graphs
    Ghorbani, M.
    Bani-Asadi, E.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 4 (01): : 111 - 121
  • [15] Upper bounds for the number of spanning trees of graphs
    Bozkurt, S. Burcu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [16] On Family of Graphs with Minimum Number of Spanning Trees
    Bogdanowicz, Zbigniew R.
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1647 - 1652
  • [17] On Family of Graphs with Minimum Number of Spanning Trees
    Zbigniew R. Bogdanowicz
    Graphs and Combinatorics, 2013, 29 : 1647 - 1652
  • [18] The Generating Function is Rational for the Number of Rooted Forests in a Circulant Graph
    Kamalov U.P.
    Kutbaev A.B.
    Mednykh A.D.
    Siberian Advances in Mathematics, 2023, 33 (4) : 322 - 328
  • [19] COUNTING ROOTED SPANNING FORESTS IN COBORDISM OF TWO CIRCULANT GRAPHS
    Abrosimov, N., V
    Baigonakova, G. A.
    Grunwald, L. A.
    Mednykh, I. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 814 - 823
  • [20] The number of spanning trees in Kn -chain and ring graphs
    Cheng, Sujing
    Ge, Jun
    PHYSICA SCRIPTA, 2024, 99 (11)