On Rationality of Generating Function for the Number of Spanning Trees in Circulant Graphs

被引:3
|
作者
Mednykh, A. D. [1 ]
Mednykh, I. A.
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
spanning tree; circulant graph; Chebyshev polynomial; generating function; JACOBIAN GROUP; COMPLEXITY; FORMULAS;
D O I
10.1142/S1005386720000085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F(x) = Sigma(infinity)(n=1) tau(s1,) (s2, ..)(.,)( sk) (n)x(n) be the generating function for the number tau(s1,) (s2, ..)(.,)( sk) (n) of spanning trees in the circulant graph C-n (s(1), s(2), ..., s(k)). We show that F(x) is a rational function with integer coefficients satisfying the property F(x) = F(1/x). A similar result is also true for the circulant graphs C-2n (s(1), s(2), ..., s(k), n) of odd valency. We illustrate the obtained results by a series of examples.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [1] The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic
    Mednykh, A. D.
    Mednykh, I. A.
    DISCRETE MATHEMATICS, 2019, 342 (06) : 1772 - 1781
  • [2] The number of spanning trees in odd valent circulant graphs
    Chen, XB
    Lin, QY
    Zhang, FJ
    DISCRETE MATHEMATICS, 2004, 282 (1-3) : 69 - 79
  • [3] The asymptotic number of spanning trees in circulant graphs
    Golin, Mordecai J.
    Yong, Xuerong
    Zhang, Yuanping
    DISCRETE MATHEMATICS, 2010, 310 (04) : 792 - 803
  • [4] COUNTING SPANNING TREES IN COBORDISM OF TWO CIRCULANT GRAPHS
    Abrosimov, Nikolay Vladimirovich
    Baigonakova, Galya Amanboldynovna
    Mednykh, Ilya Aleksandrovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1145 - 1157
  • [5] Spanning trees in directed circulant graphs and cycle power graphs
    Justine Louis
    Monatshefte für Mathematik, 2017, 182 : 51 - 63
  • [6] Spanning trees in directed circulant graphs and cycle power graphs
    Louis, Justine
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (01): : 51 - 63
  • [7] An efficient approach for counting the number of spanning trees in circulant and related graphs
    Atajan, Talip
    Yong, Xuerong
    Inaba, Hiroshi
    DISCRETE MATHEMATICS, 2010, 310 (6-7) : 1210 - 1221
  • [8] Generating formulas of the number of spanning trees of some special graphs
    S. N. Daoud
    The European Physical Journal Plus, 129
  • [9] Generating formulas of the number of spanning trees of some special graphs
    Daoud, S. N.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (07):
  • [10] The number of spanning trees in directed circulant graphs with non-fixed jumps
    Chen, Xiebin
    DISCRETE MATHEMATICS, 2007, 307 (15) : 1873 - 1880