Robust two-step unsupervised analysis of breast cancer gene expression data reveals otherwise hidden clinically significant molecular subtypes

被引:0
|
作者
Moir, Nicholas [1 ]
Simpson, T. Ian [2 ]
Sims, Andrew H. [1 ]
机构
[1] Univ Edinburgh, Canc Res Ctr, MRC Inst Genet & Mol Med, Appl Bioinformat Canc, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:546 / 547
页数:2
相关论文
共 23 条
  • [1] Unsupervised analysis reveals two molecular subgroups of serous ovarian cancer with distinct gene expression profiles and survival
    Katarzyna M. Lisowska
    Magdalena Olbryt
    Sebastian Student
    Katarzyna A. Kujawa
    Alexander J. Cortez
    Krzysztof Simek
    Agnieszka Dansonka-Mieszkowska
    Iwona K. Rzepecka
    Patrycja Tudrej
    Jolanta Kupryjańczyk
    Journal of Cancer Research and Clinical Oncology, 2016, 142 : 1239 - 1252
  • [2] Unsupervised analysis reveals two molecular subgroups of serous ovarian cancer with distinct gene expression profiles and survival
    Lisowska, Katarzyna M.
    Olbryt, Magdalena
    Student, Sebastian
    Kujawa, Katarzyna A.
    Cortez, Alexander J.
    Simek, Krzysztof
    Dansonka-Mieszkowska, Agnieszka
    Rzepecka, Iwona K.
    Tudrej, Patrycja
    Kupryjanczyk, Jolanta
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2016, 142 (06) : 1239 - 1252
  • [3] Gene expression profiling of male breast cancer reveals two subgroups distinct from the intrinsic subtypes of female breast cancer
    Johansson, Ida
    Nilsson, Cecilia
    Berglund, Pontus
    Lauss, Martin
    Ringner, Markus
    Olsson, Hakan
    Luts, Lena
    Thorstensson, Sten
    Fjallskog, Marie-Louise
    Hedenfalk, Ingrid
    CANCER RESEARCH, 2012, 72
  • [4] Topological analysis of gene expression arrays identifies high risk molecular subtypes in breast cancer
    Javier Arsuaga
    Nils A. Baas
    Daniel DeWoskin
    Hideaki Mizuno
    Aleksandr Pankov
    Catherine Park
    Applicable Algebra in Engineering, Communication and Computing, 2012, 23 : 3 - 15
  • [5] Topological analysis of gene expression arrays identifies high risk molecular subtypes in breast cancer
    Arsuaga, Javier
    Baas, Nils A.
    DeWoskin, Daniel
    Mizuno, Hideaki
    Pankov, Aleksandr
    Park, Catherine
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2012, 23 (1-2) : 3 - 15
  • [6] A Two-Step Clustering for 3-D Gene Expression Data Reveals the Main Features of the Arabidopsis Stress Response
    Strauch, Martin
    Supper, Jochen
    Spieth, Christian
    Wanke, Dierk
    Kilian, Joachim
    Harter, Klaus
    Zell, Andreas
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2007, 4 (01):
  • [7] A Clinically Applicable Gene-Expression Classifier Reveals Intrinsic and Extrinsic Contributions to Consensus Molecular Subtypes in Primary and Metastatic Colon Cancer
    Piskol, Robert
    Huw, Ling
    Sergin, Ismail
    Kljin, Christiaan
    Modrusan, Zora
    Kim, Doris
    Kljavin, Noelyn
    Tam, Rachel
    Patel, Rajesh
    Burton, Jeremy
    Penuel, Elicia
    Qu, Xueping
    Koeppen, Hartmut
    Sumiyoshi, Teiko
    de Sauvage, Frederic
    Lackner, Mark R.
    de Sousa e Melo, Felipe
    Kabbarah, Omar
    CLINICAL CANCER RESEARCH, 2019, 25 (14) : 4431 - 4442
  • [8] Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms
    Sorlie, Therese
    Wang, Yulei
    Xiao, Chunlin
    Johnsen, Hilde
    Naume, Bjorn
    Samaha, Raymond R.
    Borresen-Dale, Anne-Lise
    BMC GENOMICS, 2006, 7 (1)
  • [9] Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms
    Therese Sørlie
    Yulei Wang
    Chunlin Xiao
    Hilde Johnsen
    Bjørn Naume
    Raymond R Samaha
    Anne-Lise Børresen-Dale
    BMC Genomics, 7
  • [10] Single agent in vitro drug sensitivity of molecular breast cancer subtypes defined by gene expression analysis
    Brase, J.
    Schmidt, M.
    Hengstler, J.
    von Toerne, C.
    Koebl, H.
    Gehrmann, M.
    BREAST CANCER RESEARCH AND TREATMENT, 2007, 106 : S91 - S91