An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy

被引:28
|
作者
Ali, Muhammad [1 ]
Son, Dae-Hee [1 ]
Kang, Sang-Hee [1 ]
Nam, Soon-Ryul [1 ]
机构
[1] Myongji Univ, Dept Elect Engn, Yongin 449728, South Korea
关键词
current transformer (CT) saturation; deep neural networks (DNNs); autoencoder; classification; deep learning (DL); unsupervised feature extraction; supervised fine-tuning strategy; PROTECTION SCHEME; TRANSFORMERS; ALGORITHM;
D O I
10.3390/en10111830
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Current transformer (CT) saturation is one of the significant problems for protection engineers. If CT saturation is not tackled properly, it can cause a disastrous effect on the stability of the power system, and may even create a complete blackout. To cope with CT saturation properly, an accurate detection or classification should be preceded. Recently, deep learning (DL) methods have brought a subversive revolution in the field of artificial intelligence (AI). This paper presents a new DL classification method based on unsupervised feature extraction and supervised fine-tuning strategy to classify the saturated and unsaturated regions in case of CT saturation. In other words, if protection system is subjected to a CT saturation, proposed method will correctly classify the different levels of saturation with a high accuracy. Traditional AI methods are mostly based on supervised learning and rely heavily on human crafted features. This paper contributes to an unsupervised feature extraction, using autoencoders and deep neural networks (DNNs) to extract features automatically without prior knowledge of optimal features. To validate the effectiveness of proposed method, a variety of simulation tests are conducted, and classification results are analyzed using standard classification metrics. Simulation results confirm that proposed method classifies the different levels of CT saturation with a remarkable accuracy and has unique feature extraction capabilities. Lastly, we provided a potential future research direction to conclude this paper.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A novel approach to coral species classification using deep learning and unsupervised feature extraction
    Firdous, R. Jannathul
    Sabena, S.
    JOURNAL OF SPATIAL SCIENCE, 2024,
  • [2] Transfer Learning for Sentiment Analysis Using BERT Based Supervised Fine-Tuning
    Prottasha, Nusrat Jahan
    Sami, Abdullah As
    Kowsher, Md
    Murad, Saydul Akbar
    Bairagi, Anupam Kumar
    Masud, Mehedi
    Baz, Mohammed
    SENSORS, 2022, 22 (11)
  • [3] Recognition of Conus species using a combined approach of supervised learning and deep learning-based feature extraction
    Qasmi, Noshaba
    Bibi, Rimsha
    Rashid, Sajid
    PLOS ONE, 2024, 19 (12):
  • [4] Diagnosis of Brain Tumor Using Light Weight Deep Learning Model with Fine-Tuning Approach
    Shelatkar, Tejas
    Urvashi, Dr.
    Shorfuzzaman, Mohammad
    Alsufyani, Abdulmajeed
    Lakshmanna, Kuruva
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [5] Fine-Tuning Dropout Regularization in Energy-Based Deep Learning
    de Rosa, Gustavo H.
    Roder, Mateus
    Papa, Joao P.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2021, 2021, 12702 : 99 - 108
  • [6] Classification of hyperspectral data using extended attribute profiles based on supervised and unsupervised feature extraction techniques
    Marpu, Prashanth Reddy
    Pedergnana, Mattia
    Mura, Mauro Dalla
    Peeters, Stijn
    Benediktsson, Jon Atli
    Bruzzone, Lorenzo
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2012, 3 (03) : 269 - 298
  • [7] Breast Cancer Diagnosis Using an Unsupervised Feature Extraction Algorithm Based on Deep Learning
    Xiao, Yawen
    Wu, Jun
    Lin, Zongli
    Zhao, Xiaodong
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9428 - 9433
  • [8] An Improved Modulation Recognition Algorithm Based on Fine-Tuning and Feature Re-Extraction
    Wang, Yibing
    Zhou, Liang
    Yang, Zhutian
    Wu, Longwen
    Yin, Zhendong
    Zhao, Yaqin
    Wu, Zhilu
    ELECTRONICS, 2023, 12 (09)
  • [9] A new hybrid feature selection approach using feature association map for supervised and unsupervised classification
    Das, Amit Kumar
    Goswami, Saptarsi
    Chakrabarti, Amlan
    Chakraborty, Basabi
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 88 : 81 - 94
  • [10] Association Rules Based Feature Extraction for Deep Learning Classification
    Kharsa, Ruba
    Al Aghbari, Zaher
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, ICSOFTCOMP 2022, 2023, 1788 : 72 - 83