GALERKIN APPROXIMATIONS IN THE PROBLEM OF ONE-DIMENSIONAL UNSTEADY MOTION OF A VISCOUS COMPRESSIBLE TWO-COMPONENT FLUID

被引:0
|
作者
Mamontov, A. E. [1 ,2 ]
Prokudin, D. A. [1 ,2 ]
机构
[1] Lavrentyev Inst Hydrodynam, 15 Lavrenteva Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 1 Pirogova Str, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Galerkin approximations; non-stationary boundary value problem; one-dimensional flow; viscous compressible fluid; homogeneous multi-velocity multifluid;
D O I
10.33048/semi.2020.17.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an initial-boundary value problem which describes unsteady motions of a viscous compressible two-component fluid. We formulate an approximate problem via the Galerkin method, and prove its solvability.
引用
收藏
页码:406 / 415
页数:10
相关论文
共 50 条
  • [31] Correlators in the one-dimensional two-component Bose and Fermi gases
    Izergin, AG
    Pronko, AG
    PHYSICS LETTERS A, 1997, 236 (5-6) : 445 - 454
  • [32] Itinerant ferromagnetism in one-dimensional two-component Fermi gases
    Jiang, Yuzhu
    Kurlov, D. V.
    Guan, Xi-Wen
    Schreck, F.
    Shlyapnikov, G. V.
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [33] Correlators in the one-dimensional two-component Bose and Fermi gases
    Izergin, A.G.
    Pronko, A.G.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 236 (5-6): : 445 - 454
  • [34] Two-component fermi gas in a one-dimensional harmonic trap
    Xianlong, Gao
    Wonneberger, W.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 65 (3 B): : 1 - 033610
  • [35] Two-component Fermi gas in a one-dimensional harmonic trap
    Gao, XL
    Wonneberger, W
    PHYSICAL REVIEW A, 2002, 65 (03): : 7
  • [36] Piecewise Uniform Quantization for One-Dimensional Two-Component GMM
    Jovanovic, Aleksandra
    Peric, Zoran
    Vucic, Nikola
    2022 21ST INTERNATIONAL SYMPOSIUM INFOTEH-JAHORINA (INFOTEH), 2022,
  • [37] Robustness of one-dimensional viscous fluid motion under multidimensional perturbations
    Feireisl, Eduard
    Sun, Yongzhong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) : 7529 - 7539
  • [38] One-Dimensional Equations of Motion of a Viscous Incompressible Fluid in Flexible Tubes
    Gulyaev, Yu. P.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2012, 12 (02): : 64 - 67
  • [39] APPROXIMATIONS OF THE ONE-DIMENSIONAL BOUNCE PROBLEM
    BUTTAZZO, G
    PERCIVALE, D
    RICERCHE DI MATEMATICA, 1981, 30 (02) : 217 - 231
  • [40] Collective excitations in a two-component one-dimensional massless Dirac plasma
    Enaldiev, V. V.
    PHYSICAL REVIEW B, 2018, 98 (15)