Exceptional points near first- and second-order quantum phase transitions

被引:13
作者
Stransky, Pavel [1 ]
Dvorak, Martin [1 ]
Cejnar, Pavel [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, V Holesovickach 2, CR-18000 Prague, Czech Republic
关键词
SYSTEMS; MODEL; CLASSIFICATION; BEHAVIOR; SPECTRA; STATES;
D O I
10.1103/PhysRevE.97.012112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the impact of quantum phase transitions (QPTs) on the distribution of exceptional points (EPs) of the Hamiltonian in the complex-extended parameter domain. Analyzing first-and second-order QPTs in the Lipkin-Meshkov-Glick model we find an exponentially and polynomially close approach of EPs to the respective critical point with increasing size of the system. If the critical Hamiltonian is subject to random perturbations of various kinds, the averaged distribution of EPs close to the critical point still carries decisive information on the QPT type. We therefore claim that properties of the EP distribution represent a parametrization-independent signature of criticality in quantum systems.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Investigation of the Oscillatory Properties of Fourth-Order Delay Differential Equations Using a Comparison Approach with First- and Second-Order Equations [J].
Moaaz, Osama ;
Elsaeed, Shaimaa ;
Al-Jaser, Asma ;
Ibrahim, Samia ;
Essam, Amira .
AXIOMS, 2024, 13 (09)
[42]   Enhancement Factor for Gas Absorption in a Finite Liquid Layer. Part 2: First- and Second-Order Reactions in a Liquid in Plug Flow [J].
Yue, Jun ;
Rebrov, Evgeny V. ;
Schouten, Jaap C. .
CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (05) :859-869
[43]   First- and second-order forcing expansions in a lattice Boltzmann method reproducing isothermal hydrodynamics in artificial compressibility form [J].
Silva, Goncalo ;
Semiao, Viriato .
JOURNAL OF FLUID MECHANICS, 2012, 698 :282-303
[44]   Robust PI and PID design for first- and second-order processes with zeros, time-delay and structured uncertainties [J].
Parada, M. ;
Sbarbaro, D. ;
Borges, R. A. ;
Peres, P. L. D. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (01) :95-106
[45]   Paths to annihilation of first- and second-order (anti)skyrmions via (anti)meron nucleation on the frustrated square lattice [J].
Desplat, L. ;
Kim, J-, V ;
Stamps, R. L. .
PHYSICAL REVIEW B, 2019, 99 (17)
[46]   Unmanned Aerial Vehicle Propagation Channel over Vegetation and Lake Areas: First- and Second-Order Statistical Analysis [J].
Leite, Deyvid L. ;
Alsina, Pablo Javier ;
de Medeiros Campos, Millena M. ;
de Sousa Jr, Vicente A. ;
de Medeiros, Alvaro A. M. .
SENSORS, 2022, 22 (01)
[47]   Magnetic and magnetocaloric properties in La0.7Ca0.3-xNaxMnO3 exhibiting first-order and second-order magnetic phase transitions [J].
Ho, T. A. ;
Dang, N. T. ;
The-Long Phan ;
Yang, D. S. ;
Lee, B. W. ;
Yu, S. C. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 676 :305-312
[48]   Second-order phase transitions and divergent linear response in dynamical mean-field theory [J].
van Loon, Erik G. C. P. .
PHYSICAL REVIEW B, 2024, 109 (24)
[49]   Quantum Dynamics of Radiation less Electronic Transitions Including Normal Modes Displacements and Duschinsky Rotations: A Second-Order Cumulant Approach [J].
Borrelli, Raffaele ;
Peluso, Andrea .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (02) :415-422
[50]   Comparisons between the first- and second-order spectral stochastic estimations in investigating the multiphysics couplings for a supersonic turbulent channel flow [J].
Cheng, Cheng ;
Fu, Lin .
PHYSICAL REVIEW FLUIDS, 2024, 9 (10)