Experimental design for optimal parameter estimation of an enzyme kinetic process based on the analysis of the Fisher information matrix

被引:26
|
作者
Lindner, PFO [1 ]
Hitzmann, B [1 ]
机构
[1] Leibniz Univ Hannover, Inst Tech Chem, D-30167 Hannover, Germany
关键词
experimental design; enzyme kinetic; Michaelis-Menten kinetic; Fisher information; parameter estimation;
D O I
10.1016/j.jtbi.2005.05.016
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The investigation of enzyme kinetics is increasingly important, especially for finding active substances and understanding intracellular behaviors. Therefore, the determination of an enzyme's kinetic parameters is crucial. For this a systematic experimental design procedure is necessary to avoid wasting time and resources. The parameter estimation error of a Michaelis-Menten enzyme kinetic process is analysed analytically to reduce the search area as well as numerically to specify the optimum for parameter estimation. From analytical analysis of the Fisher information matrix the fact is obtained, that an enzyme feed will not improve the estimation process, but substrate feeding is favorable with small volume flow. Unconstrained and constrained process conditions are considered. If substrate fed-batch process design is used instead of pure batch experiments the improvements of the Cramer-Rao lower bound of the variance of parameter estimation error reduces to 82% for and to 60% for K of the batch values in average. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:111 / 123
页数:13
相关论文
共 37 条
  • [21] Optimal experimental design for parameter estimation in column outflow experiments -: art. no. 1186
    Altmann-Dieses, AE
    Schlöder, JP
    Bock, HG
    Richter, O
    WATER RESOURCES RESEARCH, 2002, 38 (10) : 4 - 1
  • [22] Optimal experimental design based on global sensitivity analysis
    Rodriguez-Fernandez, Maria
    Kucherenko, Sergei
    Pantelides, Costas
    Shah, Nilay
    17TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2007, 24 : 63 - 68
  • [23] How Graphical Analysis Helps Interpreting Optimal Experimental Designs for Nonlinear Enzyme Kinetic Models
    Ohs, Ruediger
    Wendlandt, Jan
    Spiess, Antje C.
    AICHE JOURNAL, 2017, 63 (11) : 4870 - 4880
  • [24] Kinetic parameter estimation for cooling crystallization process based on cell average technique and automatic differentiation
    Feiran Sun
    Tao Liu
    Yi Cao
    Xiongwei Ni
    Zoltan Kalman Nagy
    Chinese Journal of Chemical Engineering, 2020, 28 (06) : 1637 - 1651
  • [25] Kinetic parameter estimation for cooling crystallization process based on cell average technique and automatic differentiation
    Sun, Feiran
    Liu, Tao
    Cao, Yi
    Ni, Xiongwei
    Nagy, Zoltan Kalman
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2020, 28 (06) : 1637 - 1651
  • [26] An Analysis of the Directional-Modifier Adaptation Algorithm Based on Optimal Experimental Design
    Gros, Sebastien
    PROCESSES, 2017, 5 (01):
  • [27] Revisiting the importance of appropriate parameter estimation based on sensitivity analysis for developing kinetic models
    Samano, Vicente
    Tirado, Alexis
    Felix, Guillermo
    Ancheyta, Jorge
    FUEL, 2020, 267 (267)
  • [28] Model-based design of optimal experiments for nonlinear systems in the context of guaranteed parameter estimation
    Mukkula, Anwesh Reddy Gottu
    Paulen, Radoslav
    COMPUTERS & CHEMICAL ENGINEERING, 2017, 99 : 198 - 213
  • [29] Value of information-based experimental design: Application to process damping in milling
    Karandikar, Jaydeep M.
    Tyler, Christopher T.
    Abbas, Ali
    Schmitz, Tony L.
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2014, 38 (04): : 799 - 808
  • [30] Model-Based Optimal Experiment Design for Nonlinear Parameter Estimation Using Exact Confidence Regions
    Mukkula, Anwesh Reddy Gottu
    Paulen, Radoslav
    IFAC PAPERSONLINE, 2017, 50 (01): : 13760 - 13765