Experimental design for optimal parameter estimation of an enzyme kinetic process based on the analysis of the Fisher information matrix

被引:26
|
作者
Lindner, PFO [1 ]
Hitzmann, B [1 ]
机构
[1] Leibniz Univ Hannover, Inst Tech Chem, D-30167 Hannover, Germany
关键词
experimental design; enzyme kinetic; Michaelis-Menten kinetic; Fisher information; parameter estimation;
D O I
10.1016/j.jtbi.2005.05.016
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The investigation of enzyme kinetics is increasingly important, especially for finding active substances and understanding intracellular behaviors. Therefore, the determination of an enzyme's kinetic parameters is crucial. For this a systematic experimental design procedure is necessary to avoid wasting time and resources. The parameter estimation error of a Michaelis-Menten enzyme kinetic process is analysed analytically to reduce the search area as well as numerically to specify the optimum for parameter estimation. From analytical analysis of the Fisher information matrix the fact is obtained, that an enzyme feed will not improve the estimation process, but substrate feeding is favorable with small volume flow. Unconstrained and constrained process conditions are considered. If substrate fed-batch process design is used instead of pure batch experiments the improvements of the Cramer-Rao lower bound of the variance of parameter estimation error reduces to 82% for and to 60% for K of the batch values in average. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:111 / 123
页数:13
相关论文
共 37 条
  • [11] Analysis of Fisher Information and the Cramer-Rao Bound for Nonlinear Parameter Estimation After Random Compression
    Pakrooh, Pooria
    Pezeshki, Ali
    Scharf, Louis L.
    Cochran, Douglas
    Howard, Stephen D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (23) : 6423 - 6428
  • [12] ANALYSIS OF FISHER INFORMATION AND THE CRAMER-RAO BOUND FOR NONLINEAR PARAMETER ESTIMATION AFTER COMPRESSED SENSING
    Pakrooh, Pooria
    Scharf, Louis L.
    Pezeshki, Ali
    Chi, Yuejie
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6630 - 6634
  • [13] Power adaptation for vector parameter estimation according to Fisher information based optimality criteria
    Gurgunoglu, Doga
    Dulek, Berkan
    Gezici, Sinan
    SIGNAL PROCESSING, 2022, 192
  • [14] Comparing experimental design schemes in predictive food microbiology: Optimal parameter estimation of secondary models
    Mertens, Laurence
    Van Derlinden, Eva
    Van Impe, Jan F.
    JOURNAL OF FOOD ENGINEERING, 2012, 112 (03) : 119 - 133
  • [15] Integration of Optimal Experimental Design and Process Optimisation to An Enzyme Reaction System
    Yu, Hui
    Guo, Jielong
    Wei, Xian
    Liang, Peidong
    Zhao, Lijun
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3615 - 3620
  • [16] Optimal Experimental Design for Parameter Estimation of an IL-6 Signaling Model
    Sinkoe, Andrew
    Hahn, Juergen
    PROCESSES, 2017, 5 (03):
  • [17] Mean-squared-error-based method for parameter ranking and selection with noninvertible fisher information matrix
    Eghtesadi, Zahra
    McAuley, Kimberley B.
    AICHE JOURNAL, 2016, 62 (04) : 1112 - 1125
  • [18] Kinetic Parameter Determination for Enzyme Hydrolysis of Fish Protein Residue Using D-optimal Design
    Pedro Valencia
    Iván Cornejo
    Sergio Almonacid
    Arthur A. Teixeira
    Ricardo Simpson
    Food and Bioprocess Technology, 2013, 6 : 290 - 296
  • [19] Kinetic Parameter Determination for Enzyme Hydrolysis of Fish Protein Residue Using D-optimal Design
    Valencia, Pedro
    Cornejo, Ivan
    Almonacid, Sergio
    Teixeira, Arthur A.
    Simpson, Ricardo
    FOOD AND BIOPROCESS TECHNOLOGY, 2013, 6 (01) : 290 - 296
  • [20] Optimal Parameter Estimation in Activated Sludge Process Based Wastewater Treatment Practice
    Du, Xianjun
    Ma, Yue
    Wei, Xueqin
    Jegatheesan, Veeriah
    WATER, 2020, 12 (09)