Experimental design for optimal parameter estimation of an enzyme kinetic process based on the analysis of the Fisher information matrix

被引:26
|
作者
Lindner, PFO [1 ]
Hitzmann, B [1 ]
机构
[1] Leibniz Univ Hannover, Inst Tech Chem, D-30167 Hannover, Germany
关键词
experimental design; enzyme kinetic; Michaelis-Menten kinetic; Fisher information; parameter estimation;
D O I
10.1016/j.jtbi.2005.05.016
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The investigation of enzyme kinetics is increasingly important, especially for finding active substances and understanding intracellular behaviors. Therefore, the determination of an enzyme's kinetic parameters is crucial. For this a systematic experimental design procedure is necessary to avoid wasting time and resources. The parameter estimation error of a Michaelis-Menten enzyme kinetic process is analysed analytically to reduce the search area as well as numerically to specify the optimum for parameter estimation. From analytical analysis of the Fisher information matrix the fact is obtained, that an enzyme feed will not improve the estimation process, but substrate feeding is favorable with small volume flow. Unconstrained and constrained process conditions are considered. If substrate fed-batch process design is used instead of pure batch experiments the improvements of the Cramer-Rao lower bound of the variance of parameter estimation error reduces to 82% for and to 60% for K of the batch values in average. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:111 / 123
页数:13
相关论文
共 36 条
  • [1] Complexity analysis and optimal experimental design for parameter estimation of biological systems
    Wu, Fang-Xiang
    Mu, Lei
    Luo, Ruizhi
    2008 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-4, 2008, : 379 - 383
  • [2] Optimal experimental design for parameter estimation of the Peleg model
    Paquet-Durand, O.
    Zettel, V.
    Hitzmann, B.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 140 : 36 - 42
  • [3] Deep optimal experimental design for parameter estimation problems
    Siddiqui, Md Shahriar Rahim
    Rahmim, Arman
    Haber, Eldad
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [4] Optimal Parameter Encoding Based on Worst Case Fisher Information Under a Secrecy Constraint
    Goken, Cagri
    Gezici, Sinan
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (11) : 1611 - 1615
  • [5] Fisher Information-Based Meter Placement in Distribution Grids via the D-Optimal Experimental Design
    Xygkis, Themistoklis C.
    Korres, George N.
    Manousakis, Nikolaos M.
    IEEE TRANSACTIONS ON SMART GRID, 2018, 9 (02) : 1452 - 1461
  • [6] Sequential ensemble-based optimal design for parameter estimation
    Man, Jun
    Zhang, Jiangjiang
    Li, Weixuan
    Zeng, Lingzao
    Wu, Laosheng
    WATER RESOURCES RESEARCH, 2016, 52 (10) : 7577 - 7592
  • [7] Parameter estimation and computation of the Fisher information matrix for functions of phase type random variables
    Pavithra, Celeste R.
    Deepak, T. G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [8] Sequential Model-Based A-Optimal Design of Experiments When the Fisher Information Matrix Is Noninvertible
    Shahmohammadi, Ali
    McAuley, Kimberley B.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (03) : 1244 - 1261
  • [9] Kinetic parameter estimation from TGA: Optimal design of TGA experiments
    Dirion, Jean-Louis
    Reverte, Cedric
    Cabassud, Michel
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2008, 86 (6A): : 618 - 625
  • [10] Approximations for Optimal Experimental Design in Power System Parameter Estimation
    Du, Xu
    Engelmann, Alexander
    Faulwasser, Timm
    Houska, Boris
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 5692 - 5697