HENON ELLIPTIC EQUATIONS IN R2 WITH SUBCRITICAL AND CRITICAL EXPONENTIAL GROWTH

被引:0
作者
Do O, Joao Marcos [1 ]
Barboza, Eudes Mendes [2 ]
机构
[1] Univ Fed Paraiba, Dept Math, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Rural Pernambuco, Dept Math, BR-50740560 Nazare Da Mata, PE, Brazil
关键词
POSITIVE SOLUTIONS; EXISTENCE; FUNCTIONALS; MAXIMIZERS; INEQUALITY; SYMMETRY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Dirichlet problem in the unit ball B-1 of R-2 for the Henon-type equation of the form {-Delta u = lambda u + vertical bar x vertical bar(alpha) f(u) in B-1, u = 0 on partial derivative B-1, where f(t) is a C-1-function in the critical growth range motivated by the celebrated Trudinger-Moser inequality. Under suitable hypotheses on constant lambda and f(t), by variational methods, we study the solvability of this problem in appropriate Sobolev s paces.
引用
收藏
页码:1 / 42
页数:42
相关论文
共 50 条
  • [31] Existence of Solutions for a Nonlocal Variational Problem in R2 with Exponential Critical Growth
    Alves, Claudianor O.
    Yang, Minbo
    JOURNAL OF CONVEX ANALYSIS, 2017, 24 (04) : 1197 - 1215
  • [32] On general Kirchhoff type equations with steep potential well and critical growth in R2
    Lou, Zhenluo
    Zhang, Jian
    AIMS MATHEMATICS, 2024, 9 (08): : 21433 - 21454
  • [33] EXISTENCE OF NONTRIVIAL SOLUTIONS TO POLYHARMONIC EQUATIONS WITH SUBCRITICAL AND CRITICAL EXPONENTIAL GROWTH
    Lam, Nguyen
    Lu, Guozhen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) : 2187 - 2205
  • [34] Hardy-Henon fractional equation with nonlinearities involving exponential critical growth
    Barboza, Eudes M.
    Miyagaki, Olimpio H.
    Pereira, Fabio R.
    Santana, Claudia R.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (01) : 307 - 345
  • [35] Ground State Solutions for a Nonlocal Equation in R2 Involving Vanishing Potentials and Exponential Critical Growth
    Albuquerque, Francisco S. B.
    Ferreira, Marcelo C.
    Severo, Uberlandio B.
    MILAN JOURNAL OF MATHEMATICS, 2021, 89 (02) : 263 - 294
  • [36] Multi-bump solutions for the nonlinear magnetic Schrodinger equation with exponential critical growth in R2
    Ji, Chao
    Radulescu, Vicentiu D.
    MANUSCRIPTA MATHEMATICA, 2021, 164 (3-4) : 509 - 542
  • [37] SCHRODINGER EQUATIONS IN R4 INVOLVING THE BIHARMONIC OPERATOR WITH CRITICAL EXPONENTIAL GROWTH
    Miyagaki, Olimpio H.
    Santana, Claudia R.
    Vieira, Ronei S.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) : 243 - 263
  • [38] SEMICLASSICAL STATES FOR A MAGNETIC NONLINEAR SCHRDINGER EQUATION WITH EXPONENTIAL CRITICAL GROWTH IN R2
    d'Avenia, Pietro
    Ji, Chao
    JOURNAL D ANALYSE MATHEMATIQUE, 2024, 153 (01): : 63 - 109
  • [39] Normalized ground state solutions for the Schrodinger systems with critical exponential growth in R2
    Chen, Jing
    Xie, Zheng
    Zhang, Xinghua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [40] Semiclassical ground state solutions for a Schrodinger equation in R2 with critical exponential growth
    Tao, Bo
    Liu, Zhibin
    Yang, Minbo
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (5-6) : 727 - 747