A PRIORI ERROR ESTIMATES FOR A STATE-CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEM

被引:13
|
作者
Roesch, Arnd [1 ]
Steinig, Simeon [2 ]
机构
[1] Univ Duisburg Essen, Fak Math, D-47057 Duisburg, Germany
[2] Univ Stuttgart, Inst Angew Anal & Numer Simulat, D-70569 Stuttgart, Germany
关键词
Elliptic optimal control problem; state constraint; a priori error estimates; REGULAR LAGRANGE MULTIPLIERS; FINITE-ELEMENT APPROXIMATION; ACTIVE SET STRATEGY; POINTWISE CONTROL; CONVERGENCE; EQUATIONS; BOUNDARY;
D O I
10.1051/m2an/2011076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine an elliptic optimal control problem with control and state constraints in R-3. An improved error estimate of O(h(s)) with 3/4 <= s <= 1-epsilon is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.
引用
收藏
页码:1107 / 1120
页数:14
相关论文
共 50 条
  • [31] A priori and a posteriori error estimates of finite-element approximations for elliptic optimal control problem with measure data
    Shakya, Pratibha
    Sinha, Rajen Kumar
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (02): : 241 - 264
  • [32] A level set approach for the solution of a state-constrained optimal control problem
    Michael Hintermüller
    Wolfgang Ring
    Numerische Mathematik, 2004, 98 : 135 - 166
  • [33] A NEW FINITE ELEMENT APPROXIMATION OF A STATE-CONSTRAINED OPTIMAL CONTROL PROBLEM
    Liu, Wenbin
    Gong, Wei
    Yan, Ningning
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (01) : 97 - 114
  • [34] A level set approach for the solution of a state-constrained optimal control problem
    Hintermüller, M
    Ring, W
    NUMERISCHE MATHEMATIK, 2004, 98 (01) : 135 - 166
  • [35] A NEW FINITE ELEMENT APPROXIMATION OF A STATE-CONSTRAINED OPTIMAL CONTROL PROBLEM
    Wenbin Liu KBS Institute of Mathematics and Statistics
    Journal of Computational Mathematics, 2009, 27 (01) : 97 - 114
  • [36] Finite element error analysis for state-constrained optimal control of the Stokes equations
    De Los Reyes, Juan Carlos
    Meyer, Christian
    Vexler, Boris
    CONTROL AND CYBERNETICS, 2008, 37 (02): : 251 - 284
  • [37] FINITE ELEMENT DISCRETIZATION OF STATE-CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS WITH SEMILINEAR STATE EQUATION
    Neitzel, Ira
    Pfefferer, Johannes
    Roesch, Arnd
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (02) : 874 - 904
  • [38] A PRIORI ERROR ESTIMATES OF FINITE VOLUME METHODS FOR GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Feng, Yuming
    Lu, Zuliang
    Cao, Longzhou
    Li, Lin
    Zhang, Shuhua
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [39] A priori error estimates of a meshless method for optimal control problems of stochastic elliptic PDEs
    Huang, Fenglin
    Chen, Yanping
    Huang, Yunqing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (05) : 1048 - 1065
  • [40] State-constrained optimal control in Hilbert space
    Wang, GS
    Wang, LJ
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (01) : 255 - 276