On the defect of compactness for the Strichartz estimates of the Schrodinger equations

被引:166
作者
Keraani, S
机构
[1] Univ Paris Sud, Anal Numer Lab, F-91405 Orsay, France
[2] Univ Paris Sud, EDP, F-91405 Orsay, France
关键词
Schrodinger equations; Strichartz estimates; compactness; asymptotic analysis; a priori estimates;
D O I
10.1006/jdeq.2000.3951
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that every sequence of solutions to the linear Schrodinger equation, with bounded data in H-1(R-d), d greater than or equal to 3, can be written, up to a subsequence, as an almost orthogonal sum of sequences of the type h(n)(-(d-2)/2) V((t-t(n))/h(n)(2), (x-x(n))/h(n)), where V is a solution of the linear Schrodinger equation, with a small remainder term in Strichartz norms. Using this decomposition, we prove a similar one for the defocusing H-1-critical nonlinear Schrodinger equation, assuming that the initial data belong to a ball in the energy space where the equation is solvable. This implies, in particular, the existence of an a priori estimate of the Strichartz norms in terms of the energy, (C) 2001 Academic Press.
引用
收藏
页码:353 / 392
页数:40
相关论文
共 16 条
[1]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[2]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[3]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[4]  
CONSTANTIN P, 1988, AM MATH SOC, V1
[5]  
GERARD P, 1996, SEM EQ DER PART EC P
[6]  
Gerard P., 1998, ESAIM: Control, Optimisation and Calculus of Variations, V3, P213, DOI 10.1051/cocv:1998107
[7]  
GINIBRE J, 1985, J MATH PURE APPL, V64, P363
[8]  
KATO T, 1987, ANN I H POINCARE-PHY, V46, P113
[9]  
Merle F, 1998, INT MATH RES NOTICES, V1998, P399
[10]   Restriction theorems and maximal operators related to oscillatory integrals in R3 [J].
Moyua, A ;
Vargas, A ;
Vega, L .
DUKE MATHEMATICAL JOURNAL, 1999, 96 (03) :547-574