Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air

被引:93
作者
Sakwa-Novak, Miles A. [1 ]
Yoo, Chun-Jae [1 ]
Tan, Shuai [1 ]
Rashidi, Fereshteh [1 ]
Jones, Christopher W. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr NW, Atlanta, GA 30332 USA
关键词
adsorption; amines; carbon storage; mesoporous materials; polymers; HOLLOW-FIBER SORBENTS; CARBON-DIOXIDE CAPTURE; MESOPOROUS SILICA; SUPPORTED PEI; POLYETHYLENEIMINE; STEAM; POLY(ETHYLENEIMINE); SEPARATION; EFFICIENCY; SORPTION;
D O I
10.1002/cssc.201600404
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of practical and effective gas-solid contactors is an important area in the development of CO2 capture technologies. Target CO2 capture applications, such as post-combustion carbon capture and sequestration (CCS) from power plant flue gases or CO2 extraction directly from ambient air (DAC), require high flow rates of gas to be processed at low cost. Extruded monolithic honeycomb structures, such as those employed in the catalytic converters of automobiles, have excellent potential as structured contactors for CO2 adsorption applications because of the low pressure drop imposed on fluid moving through the straight channels of such structures. Here, we report the impregnation of poly(ethylenimine) (PEI), an effective aminopolymer reported commonly for CO2 separation, into extruded monolithic alumina to form structured CO2 sorbents. These structured sorbents are first prepared on a small scale, characterized thoroughly, and compared with powder sorbents with a similar composition. Despite consistent differences observed in the filling of mesopores with PEI between the monolithic and powder sorbents, their performance in CO2 adsorption is similar across a range of PEI contents. A larger monolithic cylinder (1 inch diameter, 4 inch length) is evaluated under conditions closer to those that might be used in large-scale applications and shows a similar performance to the smaller monoliths and powders tested initially. This larger structure is evaluated over five cycles of CO2 adsorption and steam desorption and demonstrates a volumetric capacity of 350 mol(CO2) m(monolith)(-3) and an equilibration time of 350 min under a 0.4 ms(-1) linear flow velocity through the monolith channels using 400 ppm CO2 in N-2 as the adsorption gas at 30 degrees C. This volumetric capacity surpasses that of a similar technology considered previously, which suggested that CO2 could be removed from air at an operating cost as low as $100 per ton.
引用
收藏
页码:1859 / 1868
页数:10
相关论文
共 77 条
[1]  
Addiego W. P., 2013, [No title captured], Patent No. [US20130207034, 20130207034]
[2]  
Addiego W. P., 2011, [No title captured], Patent No. [US20120216676, 20120216676]
[3]   Aminosilanes Grafted to Basic Alumina as CO2 Adsorbents-Role of Grafting Conditions on CO2 Adsorption Properties [J].
Bali, Sumit ;
Leisen, Johannes ;
Foo, Guo Shiou ;
Sievers, Carsten ;
Jones, Christopher W. .
CHEMSUSCHEM, 2014, 7 (11) :3145-3156
[4]   Oxidative Stability of Amino Polymer-Alumina Hybrid Adsorbents for Carbon Dioxide Capture [J].
Bali, Sumit ;
Chen, Thomas T. ;
Chaikittisilp, Watcharop ;
Jones, Christopher W. .
ENERGY & FUELS, 2013, 27 (03) :1547-1554
[5]   Amine-bearing mesoporous silica for CO2 removal from dry and humid air [J].
Belmabkhout, Youssef ;
Serna-Guerrero, Rodrigo ;
Sayari, Abdelhamid .
CHEMICAL ENGINEERING SCIENCE, 2010, 65 (11) :3695-3698
[6]   Dynamics of CO2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design [J].
Bollini, Praveen ;
Brunelli, Nicholas A. ;
Didas, Stephanie A. ;
Jones, Christopher W. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (46) :15153-15162
[7]   Amine-oxide hybrid materials for acid gas separations [J].
Bollini, Praveen ;
Didas, Stephanie A. ;
Jones, Christopher W. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (39) :15100-15120
[8]   Mesoporous Alumina-Supported Amines as Potential Steam-Stable Adsorbents for Capturing CO2 from Simulated Flue Gas and Ambient Air [J].
Chaikittisilp, Watcharop ;
Kim, Hyung-Ju ;
Jones, Christopher W. .
ENERGY & FUELS, 2011, 25 (11) :5528-5537
[9]   Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity [J].
Chen, Chao ;
Yang, Seung-Tae ;
Ahn, Wha-Seung ;
Ryoo, Ryong .
CHEMICAL COMMUNICATIONS, 2009, (24) :3627-3629
[10]   Poly(ethyleneimine)-Loaded Silica Monolith with a Hierarchical Pore Structure for H2S Adsorptive Removal [J].
Chen, Qingjun ;
Fan, Feichao ;
Long, Donghui ;
Liu, Xiaojun ;
Liang, Xiaoyi ;
Qiao, Wenming ;
Ling, Licheng .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (22) :11408-11414