Domain truncation methods for the wave equation in a homogenization limit

被引:2
作者
Schaffner, Mathias [1 ]
Schweizer, Ben [1 ]
Tjandrawidjaja, Yohanes [1 ]
机构
[1] Tech Univ Dortmund, Fak Math, Dortmund, Germany
关键词
Wave equation; homogenization; domain truncation; FINITE-ELEMENT-METHOD; BOUNDARY-CONDITIONS; TIME; PROPAGATION; SCALES;
D O I
10.1080/00036811.2022.2054416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the wave equation partial derivative(2)(t)v(epsilon)-del center dot(a(epsilon del))v(epsilon) = f on an unbounded domain Omega(infinity) for highly oscillatory coefficients a(epsilon) with the scaling a(epsilon)(x) = a(x/epsilon). We consider settings in which the homogenization process for this equation is well understood, which means that v(epsilon)->(v) over bar holds for the solution (v) over bar of the homogenized problem partial derivative(2)(t)(v) over bar-del center dot(a(*)del)(v) over bar = f. In this context, domain truncation methods are studied. The goal is to calculate an approximate solution u(epsilon) on a subdomain, say Omega(-)subset of Omega(infinity). We are ready to solve the epsilon-problem on Omega(-), but we want to solve only homogenized problems on the unbounded domains Omega(infinity) or Omega(infinity)\(Omega) over bar (-). The main task is to define transmission conditions at the interface to have small differences u(epsilon )- v(epsilon). We present different methods and corresponding O(epsilon) error estimates.
引用
收藏
页码:4149 / 4170
页数:22
相关论文
共 24 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]  
[Anonymous], 1980, Lecture Note in Phys.
[3]   AN ADAPTIVE FINITE ELEMENT DTN METHOD FOR THE THREE-DIMENSIONAL ACOUSTIC SCATTERING PROBLEM [J].
Bao, Gang ;
Zhang, Mingming ;
Hu, Bin ;
Li, Peijun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (01) :61-79
[4]   LONG-TIME HOMOGENIZATION AND ASYMPTOTIC BALLISTIC TRANSPORT OF CLASSICAL WAVES [J].
Benoit, Antoine ;
Gloria, Antoine .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (03) :703-759
[5]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[6]   Local profiles and elliptic problems at different scales with defects [J].
Blanc, Xavier ;
Le Bris, Claude ;
Lions, Pierre-Louis .
COMPTES RENDUS MATHEMATIQUE, 2015, 353 (03) :203-208
[7]  
BOURGEAT A, 1994, J REINE ANGEW MATH, V456, P19
[8]  
BRAHIMOTSMANE S, 1992, J MATH PURE APPL, V71, P197
[9]   BLOCH-WAVE HOMOGENIZATION ON LARGE TIME SCALES AND DISPERSIVE EFFECTIVE WAVE EQUATIONS [J].
Dohnal, T. ;
Lamacz, A. ;
Schweizer, B. .
MULTISCALE MODELING & SIMULATION, 2014, 12 (02) :488-513
[10]   A BLOCH WAVE NUMERICAL SCHEME FOR SCATTERING PROBLEMS IN PERIODIC WAVE-GUIDES [J].
Dohnal, Tomas ;
Schweizer, Ben .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) :1848-1870