Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations

被引:40
|
作者
Li, FY [1 ]
Shu, CW [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Hamilton-Jacobi equations; discontinuous Galerkin method;
D O I
10.1016/j.aml.2004.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we reinterpret a discontinuous Galerkin method originally developed by Hu and Shu [C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM Journal on Scientific Computing 21 (1999) 666-690] (see also [0. Lepsky, C. Hu, C.-W. Shu, Analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations, Applied Numerical Mathematics 33 (2000) 423-434]) for solving Hamilton-Jacobi equations. With this reinterpretation, numerical solutions will automatically satisfy the curl-free property of the exact solutions inside each element. This new reinterpretation allows a method of lines formulation, which renders a more natural framework for stability analysis. Moreover, this reinterpretation renders a significantly simplified implementation with reduced cost, as only a smaller subspace of the original solution space in [C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM Journal on Scientific Computing 21 (1999) 666-690; 0. Lepsky, C. Hu, C.-W. Shu, Analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations, Applied Numerical Mathematics 33 (2000) 423-434] is used and the least squares procedure used in [C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM Journal on Scientific Computing 21 (1999) 666-690; 0. Lepsky, C. Hu, C.-W. Shu, Analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations, Applied Numerical Mathematics 33 (2000) 423-434] is completely avoided. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1204 / 1209
页数:6
相关论文
共 50 条
  • [41] A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations
    Tsai, YHR
    Giga, Y
    Osher, S
    MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 159 - 181
  • [42] Relaxation of Hamilton-Jacobi equations
    Ishii, H
    Loreti, P
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (04) : 265 - 304
  • [43] Externality and Hamilton-Jacobi equations
    Paola Loreti
    Giorgio Vergara Caffarelli
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 123 - 136
  • [44] Externality and Hamilton-Jacobi equations
    Loreti, P
    Caffarelli, GV
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (02): : 123 - 136
  • [45] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [46] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [47] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [48] Comparison principle for the Cauchy problem for Hamilton-Jacobi equations with discontinuous data
    Blanc, AP
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (08) : 1015 - 1037
  • [49] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [50] SIMPLIFIED DERIVATION OF THE HAMILTON-JACOBI EQUATION
    YAN, CC
    AMERICAN JOURNAL OF PHYSICS, 1984, 52 (06) : 555 - 556