A Combination of Lie Group Machine Learning and Deep Learning for Remote Sensing Scene Classification Using Multi-Layer Heterogeneous Feature Extraction and Fusion

被引:20
作者
Xu, Chengjun [1 ,2 ]
Zhu, Guobin [2 ]
Shu, Jingqian [1 ]
机构
[1] Jiangxi Normal Univ, Sch Software, Nanchang 330022, Jiangxi, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430072, Peoples R China
关键词
deep learning; feature representation; Lie Group machine learning; remote sensing scene classification; CONVOLUTIONAL NEURAL-NETWORKS; ROTATION-INVARIANT; REGION COVARIANCE; VISUAL-ATTENTION; MODEL; RECOGNITION; IMAGES; SCALE;
D O I
10.3390/rs14061445
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Discriminative feature learning is the key to remote sensing scene classification. Previous research has found that most of the existing convolutional neural networks (CNN) focus on the global semantic features and ignore shallower features (low-level and middle-level features). This study proposes a novel Lie Group deep learning model for remote sensing scene classification to solve the above-mentioned challenges. Firstly, we extract shallower and higher-level features from images based on Lie Group machine learning (LGML) and deep learning to improve the feature representation ability of the model. In addition, a parallel dilated convolution, a kernel decomposition, and a Lie Group kernel function are adopted to reduce the model's parameters to prevent model degradation and over-fitting caused by the deepening of the model. Then, the spatial attention mechanism can enhance local semantic features and suppress irrelevant feature information. Finally, feature-level fusion is adopted to reduce redundant features and improve computational performance, and cross-entropy loss function based on label smoothing is used to improve the classification accuracy of the model. Comparative experiments on three public and challenging large-scale remote-sensing datasets show that our model improves the discriminative ability of features and achieves competitive accuracy against other state-of-the-art methods.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] ECG noise classification using deep learning with feature extraction
    Vijayakumar, Vibinkumar
    Ummar, Shaik
    Varghese, Thomas J.
    Shibu, Anu Elizabeth
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (08) : 2287 - 2293
  • [42] An Empiric Analysis of Wavelet-Based Feature Extraction on Deep Learning and Machine Learning Algorithms for Arrhythmia Classification
    Singh, Ritu
    Rajpal, Navin
    Mehta, Rajesh
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2021, 6 (06): : 25 - 34
  • [43] Deep-Learning based Global and Semantic Feature Fusion for Indoor Scene Classification
    Pereira, Ricardo
    Goncalves, Nuno
    Garrote, Luis
    Barros, Tiago
    Lopes, Ana
    Nunes, Urbano J.
    2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020), 2020, : 67 - 73
  • [44] Deep metric learning method for high resolution remote sensing image scene classification
    Ye L.
    Wang L.
    Zhang W.
    Li Y.
    Wang Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (06): : 698 - 707
  • [45] Leveraging mayfly optimization with deep learning for secure remote sensing scene image classification
    Ragab, Mahmoud
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108
  • [46] Road Extraction from High-Resolution Remote Sensing Imagery Using Deep Learning
    Xu, Yongyang
    Xie, Zhong
    Feng, Yaxing
    Chen, Zhanlong
    REMOTE SENSING, 2018, 10 (09)
  • [47] A Lightweight Convolutional Neural Network Based on Channel Multi-Group Fusion for Remote Sensing Scene Classification
    Shi, Cuiping
    Zhang, Xinlei
    Wang, Liguo
    REMOTE SENSING, 2022, 14 (01)
  • [48] Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework
    Yu, Xingrui
    Wu, Xiaomin
    Luo, Chunbo
    Ren, Peng
    GISCIENCE & REMOTE SENSING, 2017, 54 (05) : 741 - 758
  • [49] Weighted multi-deep feature extraction for hybrid deep convolutional LSTM-based remote sensing image scene classification model
    Akila, G.
    Gayathri, R.
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 18217 - 18253
  • [50] A deep learning multi-layer perceptron and remote sensing approach for soil health based crop yield estimation
    Tripathi, Akshar
    Tiwari, Reet Kamal
    Tiwari, Surya Prakash
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 113