Stochastic climate dynamics: Random attractors and time-dependent invariant measures

被引:184
|
作者
Chekroun, Mickael D. [1 ,2 ,3 ]
Simonnet, Eric [4 ]
Ghil, Michael [1 ,2 ,3 ,5 ,6 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[3] Ecole Normale Super, Environm Res & Teaching Inst CERES ERTI, F-75231 Paris 05, France
[4] CNRS, UMR 6618, Inst Non Lineaire Nice INLN UNSA, F-06560 Valbonne, France
[5] Ecole Normale Super, Dept Geosci, F-75231 Paris 05, France
[6] Ecole Normale Super, CNRS, Meteorol Dynam Lab, F-75231 Paris 05, France
[7] Ecole Normale Super, IPSL, F-75231 Paris 05, France
基金
美国国家科学基金会;
关键词
Climate dynamics; Dissipative dynamical systems; Intermittency; Pullback and random attractor; Sample invariant measure; SRB measure; EL-NINO; STATISTICAL PROPERTIES; RESPONSE THEORY; MODEL; VARIABILITY; OCEAN; ENSO; NOISE; PREDICTABILITY; APPROXIMATION;
D O I
10.1016/j.physd.2011.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article attempts a unification of the two approaches that have dominated theoretical climate dynamics since its inception in the 1960s: the nonlinear deterministic and the linear stochastic one. This unification, via the theory of random dynamical systems (RDS), allows one to consider the detailed geometric structure of the random attractors associated with nonlinear, stochastically perturbed systems. We report on high-resolution numerical studies of two idealized models of fundamental interest for climate dynamics. The first of the two is a stochastically forced version of the classical Lorenz model. The second one is a low-dimensional, nonlinear stochastic model of the El Nino-Southern Oscillation (ENSO). These studies provide a good approximation of the two models' global random attractors, as well as of the time-dependent invariant measures supported by these attractors; the latter are shown to have an intuitive physical interpretation as random versions of Sinai-Ruelle-Bowen (SRB) measures. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1685 / 1700
页数:16
相关论文
共 50 条
  • [41] Time-dependent Lagrangians invariant by a vector field
    Muñoz-Lecanda, MC
    Román-Roy, N
    Yániz-Fernández, FJ
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 57 (02) : 107 - 121
  • [42] INVARIANT DOMAINS FOR TIME-DEPENDENT SCHRODINGER EQUATION
    RADIN, C
    SIMON, B
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 29 (02) : 289 - 296
  • [43] INVARIANT IMBEDDING AND TIME-DEPENDENT TRANSPORT PROCESSES
    WOLFENDE.K
    COMPUTER JOURNAL, 1966, 8 (04): : 318 - &
  • [44] Time-Dependent Lagrangians Invariant by a Vector Field
    Miguel C. Muñoz-Lecanda
    Narciso Román-Roy
    F. Javier Yániz-Fernández
    Letters in Mathematical Physics, 2001, 57 : 107 - 121
  • [45] Random Time-Dependent Quantum Walks
    Alain Joye
    Communications in Mathematical Physics, 2011, 307 : 65 - 100
  • [46] Time-dependent iteration of random functions
    Mendivil, F.
    CHAOS SOLITONS & FRACTALS, 2015, 75 : 178 - 184
  • [47] Time-dependent Dynamics of the Corona
    Mason, Emily I.
    Lionello, Roberto
    Downs, Cooper
    Linker, Jon A.
    Caplan, Ronald M.
    Derosa, Marc L.
    ASTROPHYSICAL JOURNAL LETTERS, 2023, 959 (01)
  • [48] Random Time-Dependent Quantum Walks
    Joye, Alain
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (01) : 65 - 100
  • [49] Transport in time-dependent random potentials
    Krivolapov, Yevgeny
    Fishman, Shmuel
    PHYSICAL REVIEW E, 2012, 86 (05):
  • [50] Dephasing by time-dependent random potentials
    Nakanishi, T
    Ohtsuki, T
    Kawarabayashi, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (04) : 949 - 952