Early prediction of clinical deterioration using data-driven machine-learning modeling of electronic health records

被引:15
|
作者
Ruiz, Victor M. [1 ]
Goldsmith, Michael P. [2 ,3 ]
Shi, Lingyun [1 ]
Simpao, Allan F. [2 ,3 ]
Galvez, Jorge A. [2 ,3 ]
Naim, Maryam Y. [2 ,3 ]
Nadkarni, Vinay [2 ,3 ]
Gaynor, J. William [2 ,3 ]
Tsui, Fuchiang [1 ,2 ,3 ]
机构
[1] Childrens Hosp Philadelphia, Dept Biomed & Hlth Informat, Tsui Lab, Philadelphia, PA 19146 USA
[2] Childrens Hosp Philadelphia, Dept Anesthesiol & Crit Care Med, Philadelphia, PA 19146 USA
[3] Univ Penn, Pereleman Sch Med, Philadelphia, PA 19104 USA
来源
基金
美国安德鲁·梅隆基金会; 美国国家卫生研究院;
关键词
machine learning; electronic health records; univentricular heart; extracorporeal membrane oxygenation; cardiopulmonary resuscitation; intubation; intratracheal; CARDIAC-ARREST; CHILDREN; NAMES; SCORE;
D O I
10.1016/j.jtcvs.2021.10.060
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives: To develop and evaluate a high-dimensional, data-driven model to identify patients at high risk of clinical deterioration from routinely collected electronic health record (EHR) data. Materials and Methods: In this single-center, retrospective cohort study, 488 patients with single-ventricle and shunt-dependent congenital heart disease <6 months old were admitted to the cardiac intensive care unit before stage 2 palliation between 2014 and 2019. Using machine-learning techniques, we developed the Intensive care Warning Index (I-WIN), which systematically assessed 1028 regularly collected EHR variables (vital signs, medications, laboratory tests, and diagnoses) to identify patients in the cardiac intensive care unit at elevated risk of clinical deterioration. An ensemble of 5 extreme gradient boosting models was developed and validated on 203 cases (130 emergent endotracheal intubations, 34 cardiac arrests requiring cardiopulmonary resuscitation, 10 extracorporeal membrane oxygenation cannulations, and 29 cardiac arrests requiring cardiopulmonary resuscitation onto extracorporeal membrane oxygenation) and 378 control periods from 446 patients. Results: At 4 hours before deterioration, the model achieved an area under the receiver operating characteristic curve of 0.92 (95% confidence interval, 0.84-0.98), 0.881 sensitivity, 0.776 positive predictive value, 0.862 specificity, and 0.571 Brier skill score. Performance remained high at 8 hours before deterioration with 0.815 (0.688-0.921) area under the receiver operating characteristic curve. Conclusions: I-WIN accurately predicted deterioration events in critically-ill infants with high-risk congenital heart disease up to 8 hours before deterioration, potentially allowing clinicians to target interventions. We propose a paradigm shift from conventional expert consensus-based selection of risk factors to a data-driven, machine-learning methodology for risk prediction. With the increased availability of data capture in EHRs, I-WIN can be extended to broader applications in data-rich environments in critical care.
引用
收藏
页码:211 / +
页数:15
相关论文
共 50 条
  • [41] A Data-Driven Comparative Analysis of Machine-Learning Models for Familial Hypercholesterolemia Detection
    Kocejko, Tomasz
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [42] Machine-Learning Techniques Assist Data-Driven Well-Performance Optimization
    Carpenter, Chris
    JPT, Journal of Petroleum Technology, 2021, 73 (10): : 63 - 64
  • [43] Robust data-driven machine-learning models for subsurface applications are we there yet?
    Mishra, Srikanta
    Schuetter, Jared
    Datta-Gupta, Akhil
    Bromhal, Grant
    JPT, Journal of Petroleum Technology, 2021, 73 (03): : 25 - 30
  • [44] Chemical Composition Data-Driven Machine-Learning Prediction for Phase Stability and Materials Properties of Inorganic Crystalline Solids
    Atsumi, Taruto
    Sato, Kosei
    Yamaguchi, Yudai
    Hamaie, Masato
    Yasuda, Risa
    Tanibata, Naoto
    Takeda, Hayami
    Nakayama, Masanobu
    Karasuyama, Masayuki
    Takeuchi, Ichiro
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (09):
  • [45] Data-driven modeling of technology acceptance: A machine learning perspective
    Alwabel, Asim Suleman A.
    Zeng, Xiao-Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [46] Data-Driven Machine Learning for Wind Plant Flow Modeling
    King, R. N.
    Adcock, C.
    Annoni, J.
    Dykes, K.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
  • [47] Can machine-learning improve cardiovascular risk prediction using routine clinical data?
    Weng, Stephen F.
    Reps, Jenna
    Kai, Joe
    Garibaldi, Jonathan M.
    Qureshi, Nadeem
    PLOS ONE, 2017, 12 (04):
  • [48] Data-driven prediction of soccer outcomes using enhanced machine and deep learning techniques
    Mills, Ebenezer Fiifi Emire Atta
    Deng, Zihui
    Zhong, Zhuoqing
    Li, Jinger
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [49] Reporting of demographic data and representativeness in machine learning models using electronic health records
    Bozkurt, Selen
    Cahan, Eli M.
    Seneviratne, Martin G.
    Sun, Ran
    Lossio-Ventura, Juan A.
    Ioannidis, John P. A.
    Hernandez-Boussard, Tina
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (12) : 1878 - 1884
  • [50] Data-driven Seeing Prediction for Optics Telescope: from Statistical Modeling, Machine Learning to Deep Learning Techniques
    Wei-Jian Ni
    Quan-Le Shen
    Qing-Tian Zeng
    Huai-Qing Wang
    Xiang-Qun Cui
    Tong Liu
    Research in Astronomy and Astrophysics, 2022, 22 (12) : 155 - 168