Commutator methods for the spectral analysis of uniquely ergodic dynamical systems

被引:8
|
作者
Tiedra De Aldecoa, R. [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
关键词
HOROCYCLE FLOW; ELLIS GROUPS; COCYCLES;
D O I
10.1017/etds.2013.76
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method, based on commutator methods, for the spectral analysis of uniquely ergodic dynamical systems. When applicable, it leads to the absolute continuity of the spectrum of the corresponding unitary operators. As an illustration, we consider time changes of horocycle flows, skew products over translations and Furstenberg transformations. For time changes of horocycle flows we obtain absolute continuity under assumptions weaker than those to be found in the literature, and for skew products over translations and Furstenberg transformations we obtain countable Lebesgue spectrum under assumptions not previously covered in the literature.
引用
收藏
页码:944 / 967
页数:24
相关论文
共 50 条
  • [21] Existence of non-uniform cocycles on uniquely ergodic systems
    Lenz, D
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (02): : 197 - 206
  • [22] Ergodic optimization for noncompact dynamical systems
    Jenkinson, O.
    Mauldin, R. D.
    Urbanski, M.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2007, 22 (03): : 379 - 388
  • [23] Ergodic Properties of Tame Dynamical Systems
    Romanov, A. V.
    MATHEMATICAL NOTES, 2019, 106 (1-2) : 286 - 295
  • [24] Ergodic theory of chaotic dynamical systems
    Young, LS
    XIITH INTERNATIONAL CONGRESS OF MATHEMATICAL PHYSICS (ICMP '97), 1999, : 131 - 143
  • [25] The uniform ergodic theorem for dynamical systems
    Peskir, G
    Weber, M
    CONVERGENCE IN ERGODIC THEORY AND PROBABILITY, 1996, 5 : 305 - 332
  • [26] C*-algebras, dynamical systems, spectral analysis
    Mantoiu, M
    OPERATOR ALGEBRAS AND MATHEMATICAL PHYSICS, CONFERENCE PROCEEDINGS, 2003, : 299 - 314
  • [27] Estimates to correlation decay in discrete dynamical systems by spectral methods
    Brini, F
    Siboni, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 639 - 656
  • [28] ALMOST SURE INVARIANCE PRINCIPLE FOR DYNAMICAL SYSTEMS BY SPECTRAL METHODS
    Gouezel, Sebastien
    ANNALS OF PROBABILITY, 2010, 38 (04): : 1639 - 1671
  • [29] ERGODIC THEOREMS FOR NONCOMMUTATIVE DYNAMICAL-SYSTEMS
    CONZE, JP
    DANGNGOC, N
    INVENTIONES MATHEMATICAE, 1978, 46 (01) : 1 - 15
  • [30] Hitting and return times in ergodic dynamical systems
    Haydn, N
    Lacroix, Y
    Vaienti, S
    ANNALS OF PROBABILITY, 2005, 33 (05): : 2043 - 2050